Tuning Methodology

Non-Use of Bind Variables
Improper Index Usage
Improper Memory Configuration
Check Disk I/O
Improper PGA Setup
Modify init.ora Parameters
SQL Code Tuning
Collect Schema Statistics
Redo Log Switches
Large Full Table Scans
Small Full Table Scans and Index Scans
Many Indexes on Data Buffer Cache
Check for skewed Indexes (unbalanced)
Fragmentation on DB Objects
Allocate Files Properly (check waits on them)
Checking Active Statements
Use IPC for local Connections
Check Undo Parameters
Detect High SQL Parse
Monitor Open and Cached Cursors
Detect Top 10 Queries in SQL Area
Allocate Objects into Multiple Block Buffers (another web page)
Check for Indexes not Used and HOT Tables
Detect and Resolve Buffer Busy Waits    ***********************
Show Porcentage of a Table in the data buffer
Testing Procedures or Packages for Performance
Using PGA Advice Utility
Check Sorts
Optimizing Indexes (creating 32k block size)




Non-Use of Bind Variables
A quick method of seeing whether code is being reused (a key indicator of proper bind variable usage) is to look at the values of reusable and non-reusable memory in the shared pool. A SQL for determining this comparison of reusable to non-reusable code is shown here:

ttitle 'Shared Pool Utilization'

spool sql_garbage
select 1 nopr, to_char(a.inst_id) inst_id, a.users users,
       to_char(a.garbage,'9,999,999,999') garbage,
       to_char(b.good,'9,999,999,999') good,
       to_char((b.good/(b.good+a.garbage))*100,'9,999,999.999') good_percent
       from (select a.inst_id, b.username users,
                    sum(a.sharable_mem+a.persistent_mem) Garbage,
                    to_number(null) good
              from sys.gv_$sqlarea a,dba_users b
              where (a.parsing_user_id = b.user_id and a.executions<=1)
              group by a.inst_id, b.username
             union
              select distinct c.inst_id, b.username users, to_number(null) garbage,
                       sum(c.sharable_mem+c.persistent_mem) Good
                from dba_users b, sys.gv_$sqlarea c
                where (b.user_id=c.parsing_user_id and c.executions>1)
                group by c.inst_id, b.username) a,
            (select a.inst_id, b.username users, sum(a.sharable_mem+a.persistent_mem) Garbage,
                    to_number(null) good
               from sys.gv_$sqlarea a, dba_users b
               where (a.parsing_user_id = b.user_id and a.executions<=1)
               group by a.inst_id,b.username
             union
              select distinct c.inst_id, b.username users, to_number(null) garbage,
                     sum(c.sharable_mem+c.persistent_mem) Good
                from dba_users b, sys.gv_$sqlarea c
                where (b.user_id=c.parsing_user_id and c.executions>1)
                group by c.inst_id, b.username) b
where a.users=b.users
  and a.inst_id=b.inst_id
  and a.garbage is not null and b.good is not null
union
select 2 nopr,
'-------' inst_id,'-------------' users,'--------------' garbage,'--------------' good,
'--------------' good_percent from dual
union
select 3 nopr, to_char(a.inst_id,'999999'), to_char(count(a.users)) users,
       to_char(sum(a.garbage),'9,999,999,999') garbage, to_char(sum(b.good),'9,999,999,999') good,
       to_char(((sum(b.good)/(sum(b.good)+sum(a.garbage)))*100),'9,999,999.999') good_percent
  from (select a.inst_id, b.username users, sum(a.sharable_mem+a.persistent_mem) Garbage,
               to_number(null) good
          from sys.gv_$sqlarea a, dba_users b
          where (a.parsing_user_id = b.user_id and a.executions<=1)
          group by a.inst_id,b.username
       union
        select distinct c.inst_id, b.username users, to_number(null) garbage,
               sum(c.sharable_mem+c.persistent_mem) Good
          from dba_users b, sys.gv_$sqlarea c
          where (b.user_id=c.parsing_user_id and c.executions>1)
          group by c.inst_id,b.username) a,
        (select a.inst_id, b.username users, sum(a.sharable_mem+a.persistent_mem) Garbage,
                to_number(null) good
          from sys.gv_$sqlarea a, dba_users b
          where (a.parsing_user_id = b.user_id and a.executions<=1)
          group by a.inst_id,b.username
       union
         select distinct c.inst_id, b.username users, to_number(null) garbage,
                sum(c.sharable_mem+c.persistent_mem) Good
           from dba_users b, sys.gv_$sqlarea c
           where (b.user_id=c.parsing_user_id and c.executions>1)
           group by c.inst_id, b.username) b
   where a.users=b.users
     and a.inst_id=b.inst_id
     and a.garbage is not null and b.good is not null
   group by a.inst_id
   order by 1,2 desc
/
spool off
ttitle off
set pages 22


An example report is
Date: 03/25/05                                              Page:   1
Time: 17:51 PM            Shared Pool Utilization           SYSTEM
                            whoville database
users                Non-Shared SQL Shared SQL     Percent Shared
-------------------- -------------- -------------- --------------
WHOAPP                  532,097,982      1,775,745           .333
SYS                       5,622,594      5,108,017         47.602
DBSNMP                      678,616        219,775         24.463
SYSMAN                      439,915      2,353,205         84.250
SYSTEM                      425,586         20,674          4.633
-------------        -------------- -------------- --------------
5                       541,308,815      9,502,046          1.725


As you can see the majority owner in this application, WHOAPP is only showing 0.3 percent of reusable code by memory usage and is tying up an amazing 530 megabytes with non-reusable code! Let’s look at a database with good reuse statistics. Look at this one:
Date: 11/13/05                                              Page:   1
Time: 03:15 PM            Shared Pool Utilization           PERFSTAT      
                            dbaville database                                 
                                                                          
users                Non-Shared SQL Shared SQL     Percent Shared         
-------------------- -------------- -------------- --------------         
DBAVILLAGE                9,601,173     81,949,581         89.513         
PERFSTAT                  2,652,827        199,868          7.006         
DBASTAGER                 1,168,137     35,468,687         96.812         
SYS                          76,037      5,119,125         98.536         
-------------        -------------- -------------- --------------         
4                        13,498,174    122,737,261         90.092 

Notice how the two application owners, DBAVILLAGE and DBASTAGER show 89.513 and 96.812 reuse percentage by memory footprint for code.

So what else can we look at to see about code re-usage, the above reports give us a gross indication, how about something with a bit more usability to correct the situation?
The V$SQLAREA and V$SQLTEXT views give us the capability to look at the current code in the shared pool and determine if it is using, or not using bind variables.
set lines 140 pages 55 verify off feedback off
col num_of_times heading 'Number|Of|Repeats'
col SQL heading 'SubString - 120 Characters'
col username format a15 heading 'User'
ttitle 'Similar SQL'
spool similar_sql
select b.username,substr(a.sql_text,1,120) SQL,
       count(a.sql_text) num_of_times from v$sqlarea a, dba_users b
where a.parsing_user_id=b.user_id
group by b.username,substr(a.sql_text,1,&&chars) having count(a.sql_text) > 5
order by count(a.sql_text) desc;
spool off
undef chars
undef num_repeats
clear columns
set lines 80 pages 22 verify on feedback on
ttitle off


It shows a simple script to determine, based on the first x characters (input when the report is executed) the number of SQL statements that are identifical up to the first x characters. This shows us the repeating code in the database and helps us to track down the offending statements for correction. An example output :

Date: 02/23/05                                         Page:   1            

Time: 10:20 AM              Similar SQL               SYSTEM       
                          whoville database                                                               
User            SubString - 120 Characters                                                                                                 
--------------- -------------------------------------------------------
 Number                                                                                                                                
 Of                                                                                                                                 
 Repeats                                                                                                                                
----------                                                                                                                                
WHOAPP         SELECT Invoices."INVOICEKEY", Invoices."CLIENTKEY", Invoices."BUYSTATUS", Invoices."DEBTORKEY", Invoices."INPUTTRANSKEY"   1752                                                                                                                                
WHOAPP         SELECT DisputeCode.DisputeCode , DisputeCode.Disputed , InvDispute."ROWID" , DisputeCode."ROWID"  FROM InvDispute , Disp   458                                                                                                                                
WHOAPP         SELECT Transactions.PostDate , Payments.PointsAmt , Payments.Type_ AS PmtType , Payments.Descr , Payments.FeeBasis , Pay   449                                                                                                                                
SYS             SELECT SUM(Payments.Amt) AS TotPmtAmt , SUM(Payments.FeeEscrow) AS TotFeeEscrow , SUM(Payments.RsvEscrow) AS TotRsvEscro 428                                                                                                                                
WHOAPP         SELECT SUM(Payments.Amt) AS TotPmtAmt, SUM(Payments.FeeEscrow) AS TotFeeEscrow, SUM(Payments.RsvEscrow) AS TotRsvEscrow 428                                                                                                                                 
WHOAPP         SELECT Transactions.BatchNo , Payments.Amt , Payments."ROWID" , Transactions."ROWID"  FROM Payments , Transactions WHERE 396                                                                                                                                 
WHOAPP         INSERT INTO Payments (PaymentKey, AcctNo, Amt, ChargeAmt, Descr, FeeBasis, FeeEarned, FeeEscrow, FeeRate, FeeTaxAmt, Hol 244                                                                                                                                 
WHOAPP         SELECT Clients.Name , Clients.ClientNo , Invoices.InvNo , Invoices.ClientKey AS InvClientKey , Transactions.ClientKey AS     244                                                                                                                                 
SYS             SELECT COUNT(*) AS RecCount , INVOICES."ROWID" , TRANSACTIONS."ROWID" , PROGRAMS."ROWID"  FROM INVOICES , TRANSACTIONS , 232                                                                                                                                 


Using a substring from the above SQL the V$SQLTEXT view can be used to pull an entire listing of the code

The proper fix for non-bind variable usage is to re-write the application to use bind variables. This of course can be an expensive and time consuming process, but ultimately it provides the best fix for the problem. However, what if you can’t change the code? Oracle has provided the CURSOR_SHARING initialization variable that will automatically replace the literals in your code with bind variables. The settings for CURSOR_SHARING are EXACT (the default), FORCE, and SIMILAR.

·        EXACT – The statements have to match exactly to be reusable

·        FORCE – Always replace literals

·        SIMILAR – Perform literal peeking and replace when it makes sense

We usually suggest the use of the SIMILAR option for CURSOR_SHARING



Improper Index Usage
You will be happy to know that starting with Oracle9i there is a new view that keeps the explain plans for all current SQL in the shared pool, this view, appropriately named V$SQL_PLAN allows DBAs to determine exactly what statements are using full table scans and more importantly how often the particular SQL statements are being executed
col object_name format a28
col rows|blocks|pool a30
set pages 55
set linesize 140
set trims on
ttitle 'Full Table - Index Scans'
spool Full_Table-Index_Scans.txt
select sp.object_name,
      (select executions from v$sqlarea sa
         where sa.address = sp.address
           and sa.hash_value =sp.hash_value) no_of_full_scans,
      (select trim(lpad(nvl(trim(to_char(num_rows)),' '),10,' ')||' | '||lpad(nvl(trim(to_char(blocks)),' '),10,' ')||' | '||buffer_pool)
         from dba_tables where table_name = sp.object_name
          and owner = sp.object_owner) "rows|blocks|pool",
      (select sql_text from v$sqlarea sa
         where sa.address = sp.address
           and sa.hash_value =sp.hash_value) sqltext
  from v$sql_plan sp
  where operation IN ('TABLE ACCESS','INDEX')
    and options in ('FULL','FULL SCAN','FAST FULL SCAN','SKIP SCAN','SAMPLE FAST FULL SCAN') 
    and object_owner IN ('FGUARD9X')
and rownum < 60
order by 2 desc,3 desc;
spool off
set pages 20
ttitle off



Notice that I didn’t limit myself to just full table scans, I also looked for expensive index scans as well. The Report shows:

Fri Aug 24                                                                                                                         page    1
                                                          Full Table - Index Scans

OBJECT_NAME                  NO_OF_FULL_SCANS rows|blocks|pool
---------------------------- ---------------- ---------------------------------
SQLTEXT
--------------------------------------------------------------------------------------------------------------------------------------------
LOOKUP_WORKTYPE                        956170 17 |          5 | DEFAULT
SELECT WORKTYPEID FROM LOOKUP_WORKTYPE WHERE WORKTYPECODE = :B1

ROUTINGNUMBER                          294118 520 |          5 | DEFAULT
SELECT ROUTINGNUMBERID, ROUTINGNUMBER, BANKID, CENTERID FROM ROUTINGNUMBER WHERE BANKID = :B1

EXCHANGEITEMEXCEPTION                   39421 72280 |       1566 | DEFAULT
SELECT COUNT(1) FROM EXCHANGEITEMQUERY EIQU, EXCHANGEITEMEXCEPTION EIEX WHERE :B1 =EIQU.EXCHANGEITEMID AND EIQU.EXCHANGEITEMQUERYID=EIEX.EXC
HANGEITEMQUERYID AND EIEX.REMOVED = 0

ANDOR                                    3454 20 |          5 | DEFAULT
SELECT ANDORID, EXCEPTIONID, ISAND, LEFTID, RIGHTID FROM ANDOR ORDER BY EXCEPTIONID, ANDORID

EXCEPTIONS                               3377 97 |         60 | DEFAULT
SELECT E.EXCEPTIONID, EXCEPTIONNAME, DESCRIPTION, EXCEPTIONCODE, E.CENTERID, E.BANKID, E.CUSTOMERID, E.ACCOUNTID, DATASOURCEID, DATAFIELDID,
 INEQUALITYID, CONSTRAINTDATASOURCEID, CONSTRAINTDATAVALUE, D.DEFINITIONID, DEFINITIONATTRIBUTEID, E.ACTIVESTATUSID, E.APPLICATIONID, ISUSER
DEFINED FROM EXCEPTIONS E, DEFINITION D WHERE E.APPLICATIONID = :B1 AND E.EXCEPTIONID = D.EXCEPTIONID (+) ORDER BY E.EXCEPTIONNAME, D.DEFINI
TIONID

X937USERRECORD                           3317 0 |          1 | DEFAULT
INSERT INTO X937USERRECORD_ARCH SELECT * FROM X937USERRECORD WHERE OUTJOBID = :B1

UN_CENTERNAME                            1679
SELECT CENTERID, CENTERNAME, ACTIVESTATUSID AS CENTERACTIVESTATUSID, COMMENTS AS CENTERCOMMENTS, ITEMSETTINGID AS CENTERITEMSETTINGID, CENTE
RCODE, EXPORTSTATUSID AS CENTEREXPORTSTATUSID, EXPORTTIME AS CENTEREXPORTTIME, GLACCOUNTNUMBER, NULL AS BANKID FROM CENTER ORDER BY CENTERNA
ME

MACHINE                                  1481 3 |          5 | DEFAULT
SELECT M.MACHINEID, MACHINENAME, IPADDRESS, S.SERVICEID, SERVICENAME, APPLICATIONID FROM SERVICE S, MACHINE M, PROCESS P WHERE S.SERVICEID =
 P.SERVICEID AND M.MACHINEID = P.MACHINEID ORDER BY MACHINENAME, SERVICENAME


Notice instead of trying to capture the full SQL statement I just grab the HASH value.
I can then use the hash value to pull the interesting SQL statements using SQL similar to:

select sql_text
from v$sqltext
where hash_value=&hash
order by piece;

Once I see the SQL statement I use SQL similar to this to pull the table indexes:

set lines 132
col index_name form a30
col table_name form a30
col column_name format a30
select a.table_name,a.index_name,a.column_name,b.index_type
  from dba_ind_columns a, dba_indexes b
  where a.table_name =upper('&tab')
    and a.table_name=b.table_name
    and a.index_owner=b.owner
    and a.index_name=b.index_name
  order by a.table_name,a.index_name,a.column_position;
set lines 80

Once I have both the SQL and the indexes for the full scanned table I can usually quickly come to a tuning decision if any additional indexes are needed or, if an existing index should be used. In some cases there is an existing index that could be used of the SQL where rewritten. In that case I will usually suggest the SQL be rewritten. An example extract from a SQL analysis of this type is shown here:

SQL> @get_it
Enter value for hash: 605795936
SQL_TEXT
----------------------------------------------------------------
DELETE FROM BOUNCE WHERE UPDATED_TS < SYSDATE - 21
 
SQL> @get_tab_ind
Enter value for tab: bounce
TABLE_NAME   INDEX_NAME                 COLUMN_NAME    INDEX_TYPE
------------ -------------------------- -------------- ----------
BOUNCE       BOUNCE_MAILREPRECJOB_UNDX  MAILING_ID     NORMAL
BOUNCE       BOUNCE_MAILREPRECJOB_UNDX  RECIPIENT_ID   NORMAL
BOUNCE       BOUNCE_MAILREPRECJOB_UNDX  JOB_ID         NORMAL
BOUNCE       BOUNCE_MAILREPRECJOB_UNDX  REPORT_ID      NORMAL
BOUNCE       BOUNCE_PK                  MAILING_ID     NORMAL
BOUNCE       BOUNCE_PK                  RECIPIENT_ID   NORMAL
BOUNCE       BOUNCE_PK                  JOB_ID         NORMAL

As you can see here there is no index on UPDATED_TS

SQL> @get_it
Enter value for hash: 3347592868

SQL_TEXT
----------------------------------------------------------------
SELECT VERSION_TS, CURRENT_MAJOR, CURRENT_MINOR, CURRENT_BUILD,
CURRENT_URL, MINIMUM_MAJOR, MINIMUM_MINOR, MINIMUM_BUILD, MINIMU
M_URL, INSTALL_RA_PATH, HELP_RA_PATH FROM CURRENT_CLIENT_VERSION


Here there is no WHERE clause, hence a FTS is required.

SQL> @get_it
Enter value for hash: 4278137387
 
SQL_TEXT
----------------------------------------------------------------
SELECT STATUS FROM DB_STATUS WHERE DB_NAME = 'ARCHIVE'
 
 
SQL> @get_tab_ind
Enter value for tab: db_status
 

Improper Memory Configuration
In this section we will discuss two major areas of memory, the database buffer area and the shared pool area. The PGA areas are discussed in a later section.

The Database Buffer Area

Anything that goes to users or gets into the database must go through the database buffers.
Gone are the days of a single buffer area (the default) now we have 2, 4, 8,, 16, 32 K buffer areas, keep and recycle buffer pools on top of the default area. Within these areas we have the consistent read, current read, free, exclusive current, and many other types of blocks that are used in Oracle’s multi-block consistency model.
The V$BH view (and it’s parent the X$BH table) are the major tools used by the DBA to track block usage, however, you may find that the data in the V$BH view can be misleading unless you also tie in block size data.

set pages 50
ttitle 'All Buffers Status'
spool All_Buffers_Status.txt
select '32k '||status as status,  count(*) as num
  from v$bh
  where file# in(select file_id
                  from dba_data_files
                  where tablespace_name in ( select tablespace_name
                                               from dba_tablespaces
                                               where block_size=32768))
  group by '32k '||status
union
select '16k '||status as status, count(*) as num
  from v$bh where file# in(select file_id
                            from dba_data_files
                            where tablespace_name in (select tablespace_name
                                                        from dba_tablespaces
                                                        where block_size=16384))
  group by '16k '||status
union
select '8k '||status as status, count(*) as num
  from v$bh
  where file# in( select file_id
                    from dba_data_files
                    where tablespace_name in (select tablespace_name
                                                from dba_tablespaces
                                                where block_size=8192))
  group by '8k '||status
union
select '4k '||status as status, count(*) as num
  from v$bh
  where file# in(select file_id
                   from dba_data_files
                   where tablespace_name in ( select tablespace_name
                                                from dba_tablespaces
                                                where block_size=4096))
  group by '4k '||status
union
select '2k '||status as status, count(*) as num
  from v$bh
  where file# in(select file_id
                   from dba_data_files
                   where tablespace_name in ( select tablespace_name
                                                from dba_tablespaces
                                                where block_size=2048))
  group by '2k '||status
union
select status, count(*) as num
  from v$bh
  where status='free'
group by status
order by 1
/
spool off
ttitle off

As you can see, we will need to be SYS user to run it.  An example report would be:

Date: 12/13/05                                              Page:   1
Time: 10:39 PM               All Buffers Status             PERFSTAT      
                              whoville database                                 
                                                                          
STATUS           NUM                                                      
--------- ----------                                                       
32k cr          2930                                                      
32k xcur       29064                                                      
8k cr           1271                                                       
8k free            3                                                      
8k read            4                                                      
8k xcur       378747                                                      
free           10371               

As you can see, while there are free buffers, only 3 of them are available to the 8k, default area and none are available to our 32K area. The free buffers are actually assigned to a keep or recycle pool area (hence the null value for the blocksize) and are not available for normal usage.

So, if you see buffer busy waits, db block waits and the like and you run the above report and see no free buffers it is probably a good bet you need to increase the number of available buffers for the area showing no free buffers. You should not immediately assume you need more buffers because of buffer busy waits as these can be caused by other problems such as row lock waits, itl waits and other issues. Luckily Oracle10g has made it relatively simple to determine if we have these other types of waits:

-- Crosstab of object and statistic for an owner
--
col "Object" format a20
set numwidth 12
set lines 132
set pages 50
ttitle 'Object Wait Statistics'
spool obj_stat_xtab
select * from(
select DECODE(GROUPING(a.object_name), 1, 'All Objects',
      a.object_name) AS "Object",
sum(case when a.statistic_name = 'ITL waits'
then a.value else null end) "ITL Waits",
sum(case when a.statistic_name = 'buffer busy waits'
then a.value else null end) "Buffer Busy Waits",
sum(case when a.statistic_name = 'row lock waits'
then a.value else null end) "Row Lock Waits",
sum(case when a.statistic_name = 'physical reads'
then a.value else null end) "Physical Reads",
sum(case when a.statistic_name = 'logical reads'
then a.value else null end) "Logical Reads"
from v$segment_statistics a
where a.owner like upper('&owner')
group by rollup(a.object_name)) b
where (b."ITL Waits">0 or b."Buffer Busy Waits">0)
/
spool off
clear columns
ttitle off

This is an object statistic cross tab report based on the V$SEGMENT_STATISTICS view. The cross tab report generates a listing showing the statistics of concern as headers across the page rather than listings going down the page and summarizes them by object. This allows us to easily compare total buffer busy waits to the number of ITL or row lock waits. This ability to compare the ITL and row lock waits to buffer busy waits lets us see what objects may be experiencing contention for ITL lists, which may be experiencing excessive locking activity and through comparisons, which are highly contended for without the row lock or ITL waits. An example of the output of the report, edited for length, is shown here:

Date: 12/09/05                                     Page: 1
Time: 07:17 PM         Object Wait Statistics PERFSTAT
                whoville database
                                                                                                             
ITL Buffer Busy Row Lock Physical Logical
Object Waits       Waits    Waits     Reads Reads                     
-------------- ----- ----------- -------- ---------- -----------
BILLING 0 63636 38267 1316055 410219712
BILLING_INDX1 1 16510 55 151085 21776800
...
DELIVER_INDX1 1963 36096 32962 1952600 60809744
DELIVER_INDX2 88 16250 9029 18839481 342857488                       
DELIVER_PK 2676 99748 29293 15256214 416206384
DELIVER_INDX3 2856 104765 31710 8505812 467240320
...
All Objects 12613 20348859 1253057 1139977207 20947864752


In the above report the BILLING_INDX1 index has a large number of buffer busy waits but we can’t account for them from the ITL or Row lock waits, this indicates that the index is being constantly read and the blocks then aged out of memory forcing waits as they are re-read for the next process. On the other hand, almost all of the buffer busy waits for the DELIVER_INDX1 index can be attributed to ITL and Row Lock waits.
In situations where there are large numbers of ITL waits we need to consider the increase of the INITRANS setting for the table to remove this source of contention. If the predominant wait is row lock waits then we need to determine if we are properly using locking and cursors in our application (for example, we may be over using the SELECT…FOR UPDATE type code.) If, on the other hand all the waits are un-accounted for buffer busy waits, then we need to consider increasing the amount of database block buffers we have in our SGA.
As you can see, this object wait cross tab report can be a powerful addition to our tuning arsenal.
By knowing how our buffers are being used and seeing exactly what waits are causing our buffer wait indications we can quickly determine if we need to tune objects or add buffers, making sizing buffer areas fairly easy.
But what about the Automatic Memory Manager in 10g? It is a powerful tool for DBAs with systems that have a predictable load profile, however if your system has rapid changes in user and memory loads then AMM is playing catch up and may deliver poor performance as a result. In the case of memory it may be better to hand the system too much rather than just enough, just in time (JIT).
As many companies have found when trying the JIT methodology in their manufacturing environment it only works if things are easily predictable.
The AMM is utilized in 10g by setting two parameters, the SGA_MAX_SIZE and the SGA_TARGET. The Oracle memory manager will size the various buffer areas as needed within the range between base settings or SGA_TARGET and SGA_MAX_SIZE using the SGA_TARGET setting as an “optimal” and the SGA_MAX_SIZE as a maximum with the manual settings used in some cases as a minimum size for the specific memory component.


Check Disks I/O
Disk stress will show up on the Oracle side as excessive read or write times. Filesystem stress is shown by calculating the IO timings as shown here:

set linesize 132
rem Purpose: Calculate IO timing values for datafiles
col name format a65
col READTIM/PHYRDS heading 'Avg|Read Time' format 9,999.999
col WRITETIM/PHYWRTS heading 'Avg|Write Time' format 9,999.999
set lines 132 pages 45
ttitle 'IO Timing Analysis'
spool io_time
select  f.FILE# ,d.name,PHYRDS,PHYWRTS,READTIM/PHYRDS,WRITETIM/PHYWRTS
  from v$filestat f, v$datafile d
  where f.file#=d.file#
    and phyrds>0 and phywrts>0
union
select  a.FILE# ,b.name,PHYRDS,PHYWRTS,READTIM/PHYRDS,WRITETIM/PHYWRTS
  from v$tempstat a, v$tempfile b
  where a.file#=b.file#
    and phyrds>0 and phywrts>0
order by 5 desc;
spool off
ttitle off
clear col

An example of the output : 
Thu Jan 23                                                                                                         page   1
                                                         IO Timing Analysis

                                                                                                            Avg    Avg
       FILE# NAME                                                                    PHYRDS      PHYWRTS  Read Time Write Time
------------ ----------------------------------------------------------------- ------------ ------------ ---------- ----------
           2 /u01/app/oracle/oradata/DB11G/sysaux01.dbf                             4161073      5717990       .172  .096
           1 /u01/app/oracle/oradata/DB11G/system01.dbf                             2125608      1436299       .115  .131
           5 /u02/oradata/FG_DATA01.DBF                                             6556777       125268       .086  .127
           6 /u01/app/oracle/oradata/DB11G/FGDATA02.dbf                            25057716      1664611       .040  .063
           8 /u02/oradata/undotbs02a.dbf                                            4557281      4016244       .021  .104
           1 /u01/app/oracle/oradata/DB11G/temp01.dbf                               3067504       708791       .002  .011

Usually  you want to see limits of 10-20 milliseconds for a disk read. However in my experience for reads you should not exceed 5 milliseconds and usually with modern buffered reads, 1-2 milliseconds. Oracle is more tolerant for write delays since it uses a delayed write mechanism, so 10-20 milliseconds on writes will normally not cause significant Oracle waits, however, the smaller you can get read and write times, the better!

For the money, I would suggest RAID0/1 or RAID1/0, that is, striped and mirrored. It provides nearly all of the dependability of RAID5 and gives much better write performance. You will usually take at least a 20 percent write performance hit using RAID5. For read-only applications RAID5 is a good choice, but in high-transaction/high-performance environments the write penalties may be too high.

Table 1 shows how Oracle suggests RAID should be used with Oracle database files.

RAID

Type of Raid

Control File

Database File

Redo Log File

Archive Log File

0

Striping

Avoid

OK

Avoid

Avoid

1

Shadowing

Best

OK

Best

Best

1+0

Striping and Shadowing

OK

Best

Avoid

Avoid

3

Striping with static parity

OK

OK

Avoid

Avoid

5

Striping with rotating parity

OK

Best if RAID0-1 not available

Avoid

Avoid

Table 1: RAID Recommendations (From Metalink NOTE: 45635.1)


Improper PGA setup
Oracle provides AWR or statspack reports to track and show the number of sorts. Unfortunately hashes are not so easily tracked. Oracle tracks disk and memory sorts, number of sort rows and other sort related statistics. Hashes on the other hand only can be tracked usually by the execution plans for cumulative values, and by various views for live values. After 9i the parameter PGA_AGGREGATE_TARGET was provided to allow automated setting of the sort and hash areas. For currently active sorts or hashes the following script can be used to watch the growth of temporary areas.


column now format a14
column operation format a15
column dt new_value td noprint
set feedback off
select to_char(sysdate,'ddmonyyyyhh24miss') dt from dual;
set lines 132 pages 55
ttitle 'Sorts and Hashes'
spool sorts_hashes
select sid,work_area_size,expected_size,actual_mem_used,max_mem_used,tempseg_size,
to_char(sysdate,'ddmonyyyyhh24miss') now, operation_type operation
from v$sql_workarea_active;
spool off
clear columns
set lines 80 feedback on
ttitle off


Example output from this report.

Date: 01/04/06                                                           Page:   1
Time: 01:27 PM                    Sorts and Hashes                       SYS
                                  whoville database
     Work Area Expected Actual Mem Max Mem Tempseg
SID       Size     Size       Used    Used    Size Now             Operation
---- --------- -------- ---------- ------- ------- --------------- ---------------
1176   6402048  6862848          0       0         04jan2006132711 GROUP BY (HASH)
 582    114688   114688     114688  114688         04jan2006132711 GROUP BY (SORT)
 568   5484544  5909504     333824  333824         04jan2006132711 GROUP BY (HASH)
1306   3469312  3581952    1223680 1223680         04jan2006132711 GROUP BY (HASH)

As you can see the whoville database had no hashes, at the time the report was run, going to disk. We can also look at the cumulative statistics in the v$sysstat view for cumulative sort data.

Date: 12/09/05                                                   Page:   1
Time: 03:36 PM                  Sorts Report                PERFSTAT
                            sd3p database
Type Sort              Number Sorts
-------------------- --------------
sorts (memory)           17,213,802
sorts (disk)                    230
sorts (rows)          3,268,041,228

Another key indicator that hashes are occurring are if there is excessive IO to the temporary tablespace yet there are few or no disk sorts.
The PGA_AGGREGATE_TARGET is the target total amount of space for all PGA memory areas. However, only 5% or a maximum of 200 megabytes can be assigned to any single process. The limit for PGA_AGGREGATE_TARGET is 4 gigabytes (supposedly) however you can increase the setting above this point. The 200 megabyte limit is set by the _pga_max_size undocumented parameter, this parameter can be reset but only under the guidance of Oracle support. But what size should PGA_AGGREGATE_TARGET be set? The AWRRPT report in 10g provides a sort histogram which can help in this decision.
 

PGA Aggr Target Histogram                       DB/Inst: OLS/ols  Snaps: 73-74
-> Optimal Executions are purely in-memory operations
  Low     High
Optimal Optimal    Total Execs  Optimal Execs 1-Pass Execs M-Pass Execs
------- ------- -------------- -------------- ------------ ------------
     2K      4K      1,283,085      1,283,085            0            0
    64K    128K          2,847          2,847            0            0
   128K    256K          1,611          1,611            0            0
   256K    512K          1,668          1,668            0            0
   512K   1024K         91,166         91,166            0            0
     1M      2M            690            690            0            0
     2M      4M            174            164           10            0
     4M      8M             18             12            6            0
          -------------------------------------------------------------

 In this case we are seeing 1-pass executions indicating disk sorts are occurring with the maximum size being in the 4m to 8m range. For an 8m sort area the PGA_AGGREGATE_TARGET should be set at 320 megabytes (sorts get 0.5*(.05*PGA_AGGREGATE_TARGET)). For this system the setting was at 160 so 4 megabytes was the maximum sort size, as you can see we were seeing 1-pass sorts in the 2-4m range as well even at 160m.
By monitoring the realtime or live hashes and sorts and looking at the sort histograms from the AWRRPT reports you can get a very good idea of the needed PGA_AGGREGATE_TARGET setting. If you need larger than 200 megabyte sort areas you may need to get approval from Oracle support through the i-tar process to set the _pga_max_size parameter to greater than 200 megabytes.



Modify init.ora Parameters
- For OLTP systems the parameter DB_FILE_MULTIBLOCK_READ_COUNT is set to values 8 - 16 while in decision support systems it is set to higher values.  This parameter determines the  maximum number of database blocks read in one I/O operation during a full  table scan.  The setting of this parameter can reduce the number of  I/O calls required for a full table scan, thus improving performance.

- OPTIMIZER_INDEX_COST_ADJ
This initialization parameter is a percentage value representing a comparison between the relative cost of physical I/O requests for indexed access and full table-scans. The default value of 100 indicates to the cost-based optimizer that indexed access is 100% as costly (i.e., equally costly) as FULL table scan access. Usually it's around 15 for an OLTP system and 50 for DW systems. The smaller the value, the cheaper the cost of index access. I usually start with 20. Query to suggest its value:

col c1 heading 'Average Waits for|Full Scan Read I/O'        format 9999.999
col c2 heading 'Average Waits for|Index Read I/O'            format 9999.999
col c3 heading 'Percent of| I/O Waits|for Full Scans'        format 9.99
col c4 heading 'Percent of| I/O Waits|for Index Scans'       format 9.99
col c5 heading 'Starting|Value|for|optimizer|index|cost|adj' format 999
select a.average_wait c1, b.average_wait c2,
   a.total_waits /(a.total_waits + b.total_waits)  c3,
   b.total_waits /(a.total_waits + b.total_waits)  c4,
   (b.average_wait / a.average_wait)*100   c5
from v$system_event  a,
   v$system_event  b
where a.event = 'db file scattered read'
and b.event = 'db file sequential read';

Here is the listing from this script:
                                                                     Starting
                                                                        Value
                                                                          for
                                                                    optimizer
                                         Percent of      Percent of     index
 Average Waits for Average Waits for      I/O Waits       I/O Waits      cost
Full Scan Read I/O    Index Read I/O for Full Scans for Index Scans       adj
------------------ ----------------- -------------- --------------- ---------
             1.473              .289            .02             .98        20

As you can see, the suggested starting value for optimizer_index_cost_adj may be too high because 98% of data waits are on index (sequential) block access.  How we can "weight" this starting value for optimizer_index_cost_adj to reflect the reality that this system has only 2% waits on full-table scan reads (a typical OLTP system with few full-table scans)? As a practical matter, we never want an automated value for optimizer_index_cost_adj to be less and 1, nor more than 100. 



- OPTIMIZER_INDEX_CACHING
This initialization parameter represents a percentage value, ranging between the values of 0 and 99.  The default value of 0 indicates to the CBO that 0% of database blocks accessed using indexed access can be expected to be found in the Buffer Cache of the Oracle SGA.  This implies that all index accesses will require a physical read from the I/O subsystem for every logical read from the Buffer Cache, also known as a 0% hit ratio on the Buffer Cache.  This parameter applies only to the CBO’s calculations of accesses for blocks in an index, not for the blocks in the table related to the index. It should be set to 90.

- Set the OPTIMIZER_FEATURES_ENABLE = 9.2.0

- OPTIMIZER_MODE = first_rows (for OLTP systems). This parameter returns the rows faster.


SQL Code Tuning
If the SQL hash value (SHV) corresponding to the SQL statement is not found in the library cache during the soft parse, the server process must perform a hard parse on the statement. During this operation, the execution plan for the statement must be determined and the result must be stored in the library cache. This is a computationally expensive step. The hard parse is usually accompained by latch contention on the shared pool and library cache latches. In OLTP the aim is to parse once, execute many times. Ideally soft parse should be > 95%, if falls significantly lower than 80% then we need to investigate.

--The following query is useful for detecting programs that are performing excessive hard parses.
spool excessive_hard_parses.txt
SELECT /*+ RULE */ substr(s.program,1,20) program, COUNT(*) users,

       SUM(t.value) parses, SUM(t.value)/COUNT(*) parses_per_session,
       SUM(t.value)/(SUM(sysdate-s.logon_time)*24) parses_per_hour
  FROM v$session s, v$sesstat t
  WHERE t.statistic# = 153
    AND s.sid = t.sid
  GROUP BY s.program HAVING SUM(t.value)/COUNT(*) > 2.0
  ORDER BY parses_per_hour DESC;
spool off
 

The query produces several parse metrics aggregated by program name. The parses column indicates the total hard parse count. parses_per_session is the average number of parses for all sessions running the program, and parses_per_hour is the average number of parses per hour for all sessions running the program. Search for high numbers in the parses_per_hour column. The term high is relative. For OLTP programs, numbers below 10 are reasonable. For batch programs, higher values are acceptable. Any programs with values higher than 10 should be investigated further.

For programs that are suspect, query the library cache to identify the SQL statements being executed using the following query. Run this query as many times as are required to get a reasonable sample.
SELECT /*+ RULE */ t.sql_text
  FROM v$sql t, v$session s
  WHERE s.sql_address = t.address
    AND s.sql_hash_value = t.hash_value
    AND s.sid = &SID;

--Identifying unnecessary parse calls at system level
spool unnecessary_parse_calls_system_level.txt
select parse_calls, executions, substr(sql_text, 1, 300)
  from v$sqlarea
  where command_type in (2, 3, 6, 7)
order by 3;
spool off

Check for statements with a lot of executions. It is bad to have the PARSE_CALLS value in the above statement close to the EXECUTIONS value. The previous query will fire only for DML statements (to check on other types of statements use the appropriate command type number). Also ignore Recursive calls (dictionary access), as it is internal to Oracle

--Identifying unnecessary parse calls at session level
spool unnecessary_parse_calls_sess_level.txt
select b.sid, substr(c.username,1,12) username,

       substr(c.program,1,15) program, substr(a.name,1,20) name, b.value
  from v$sesstat b, v$statname a , v$session c
  where a.name in ('parse count (hard)', 'execute count')
    and b.statistic# = a.statistic#
    and b.sid = c.sid
    and c.username not in ('SYS','SYSTEM')
  order by sid;
spool off

Identify the sessions involved with a lot of re-parsing (VALUE column). Query these sessions from V$SESSION and then locate the program that is being executed, resulting in so much parsing.
select a.parse_calls, a.executions, substr(a.sql_text, 1, 100)
  from   v$sqlarea a, v$session b
  where  b.schema# = a.parsing_schema_id
     and b.sid = &sid
  order  by 1 desc;

As stated earlier, excessive parsing will result in higher than optimal CPU consumption.
However, the greater impact is likely to be contention for resources in the shared pool. If many small statements are hard parsed, shared pool fragmentation is likely to result. As the shared pool becomes more fragmented, the amount of time required to complete a hard parse increases. As the process of executing many unique statements continues, resource contention worsens. The critical resources will likely be memory in the library cache and the various latches associated with the shared pool. There are several straightforward methods to detect contention. The following query shows a list events on which sessions are waiting to complete before continuing. Since v$session_wait contains one row for each session, the query will return the total number of sessions waiting for each event. The view contains real-time data so it should be run repeatedly to detect possible problems.
SELECT /*+ RULE */ SUBSTR(event,1,30) event, COUNT(*)
  FROM v$session_wait
  WHERE wait_time = 0
  GROUP BY SUBSTR (event,1,30), state;


If the latch free event appears continuously, then there is latch resource contention. The following query can be used to determine which latches have contention. Since v$latchholder contains one row for each session, the query will return the total number of sessions waiting for each latch. The view contains real-time data so it should be run repeatedly.
SELECT /*+ RULE */ name, COUNT(*)
  FROM v$latchholder
  GROUP BY name;


If library cache or shared pool latches appear continuously with any frequency, then there is contention.

Latch Contention Analysis
When an Oracle session needs to place a new SQL statement in the shared pool, it has to acquire a latch, or internal lock. Under some circumstances, contention for these latches can result in poor performance. This does not happen frequently but it is worth checking. Set the db_block_lru_latches to a higher number if you are experiencing a high number of misses or sleeps.
spool latch_content_analysis.txt
clear breaks

clear computes
clear columns
column name heading "Latch Type" format a25
column pct_miss heading "Misses/Gets (%)" format 999.99999
column pct_immed heading "Immediate Misses/Gets (%)" format 999.99999
ttitle 'Latch Contention Analysis Report' skip
select n.name, misses*100/(gets+1) pct_miss,
       immediate_misses*100/(immediate_gets+1) pct_immed
from v$latchname n,v$latch l
where n.latch# = l.latch#
  and n.name in('%cache bugffer%','%protect%');
spool off


The Quick Fix
Correcting the offending software may require days or weeks However, if performance is poor, there are some things that can be done to improve performance until the source of the problem can be corrected.

1. Increase the size of the shared pool. For minor contention problems, an increase of 20% should be suitable. For more severe problems, consider incremental increases of 50% until performance improves. If the host system has limited memory and the buffer cache hit rate is above 90%, consider reducing the size of the buffer cache to increase the size of the shared pool. A buffer cache hit ratio of 80-85% with reduced latch contention will likely produce better database performance than a higher buffer cache hit ratio with high latch contention.
2. Consider reducing the value of the optimizer_max_permutations parameter if the cost-based optimizer is being used and the database is using Oracle Enterprise Server Version 8.0 or higher. This parameter controls the maximum number of execution plans that the optimizer will develop to identify the one with the lowest cost. The default value is 80,000 but values of 100 to 1,000 usually produce identical execution plans to those when a higher value is used. Since hard parses account for a significant amount of CPU consumed on short-running SQL statements, one of the artifacts of high hard parse counts is high CPU consumption. Reducing the value of optimizer_max_permutations will help mitigate the problem.
3. Flush the shared pool periodically. This will reduce memory fragmentation in the shared pool, which will reduce the elapsed time of the hard parse. The frequency
depends upon the size of the shared pool and the severity of the problem. For mild problems, consider flushing twice each day. For severe problems, it may be
necessary to flush the shared pool every few hours.
4. Pin frequently used PL/SQL functions and packages in the shared pool. When a program calls a method within a package, the entire package must be loaded into the shared pool. If the shared pool is highly fragmented and there is considerable latch contention, a significant amount of clock time may be required to load large packages into memory. Pinning packages and functions will improve the response time when they are accessed.

spool frequently_used_reloaded_objects.txt
--To view a list of frequently used and re-loaded objects
set linesize 200
select loads, executions, substr(owner, 1, 15) "Owner",

       substr(namespace, 1, 20) "Type", substr(name, 1, 100) "Text"
from v$db_object_cache
where owner not in ('SYS','SYSTEM','PERFSTAT','WMSYS','XDB')

order by loads desc;
spool off

--To pin a package in memory
exec dbms_shared_pool.keep('standard', 'p');

spool pinned_objects.txt
--To view a list of pinned objects
select substr(owner, 1, 15) "Owner",
       substr(namespace, 1, 20) "Type",
       substr(name, 1, 42) "Text"
from v$db_object_cache
where kept = 'YES'
  and owner not in ('SYS','SYSTEM')
order by 1,3;
spool off


It is straightforward to verify that an application is using bind variables using the Oracle trace facility and tkprof, the application profiler.
Tkprof produces a list of all SQL statements executed along with their execution plans and some performance statistics. These metrics are aggregated for each unique SQL statement. Verify that excess parsing is not occurring. Below is an example of a query that was parsed once for each execution. Notice that in the count
column, the number of parses is equal to the number of executions. The Parse row indicates the number of hard parses that occurred for the statement. In the ideal case, the statement would be parsed once and executed many times. call count cpu elapsed disk query current rows
call     count       cpu    elapsed       disk      query    current        rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 27 0.02 0.00 0 0 0 0
Execute 27 0.00 0.00 0 0 0 0
Fetch 108 0.03 0.00 0 189 0 81
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 162 0.05 0.00 2 189 0 81

Once the application has been corrected, the size of the shared pool should be reevaluated to determine if it could be reduced to its original size. If shared pool flushes were employed as a temporary remedy, try to reduce the number of flushes to perhaps once per day. Excessive shared pool flushes will also result in performance degradation.



Collect Schema and DB Statistics
Is CRITICAL for Oracle to have accurate statistics.
--For one Table and all its indexes
BEGIN dbms_stats.gather_table_stats
                     (ownname  => upper('&OWNMAME'),
                      tabname    => upper('&TABLE_NAME'),
                      partname   => null,
                      estimate_percent => 10,   --or DBMS_STATS.AUTO_SAMPLE_SIZE
                      degree => 3 ,
                      cascade => true);  END;
/


--For a Full Schema
BEGIN dbms_stats.gather_schema_stats(ownname  => upper('&OWNMAME'),
                                   estimate_percent => 10, 
                                   granularity => 'ALL',         
                                   method_opt => 'FOR ALL COLUMNS',  --or method_opt=>'FOR ALL COLUMNS SIZE AUTO'
                                   degree => DBMS_STATS.DEFAULT_DEGREE,
                                   options => 'GATHER AUTO',         
                                   cascade => TRUE ); END;
/




Redo Logs Switches
Check Alert Log File to see frequency of Redo Log Swtiches. If you see errors there or that the switches are too often (ideally once every 30 minutes), then :
1- Increase Redo Log Files
2- Add more groups
3- Modify LOG_CHECKPOINT_TIMEOUT=0 and duplicate the value on LOG_CHECKPOINT_INTERVAL
4- Modify archive_lag_target = 1800, so it will force the generation of archive log files to 30 minutes.

spool redo_log_switches.txt
set pages 100

column d1         form a20          heading "Date"
column sw_cnt     form 99999        heading 'Number|of|Switches'
column Mb         form 999,999      heading "Redo Size"
column redoMbytes form 999,999,9999 heading "Redo Log File Size (Mb)"
break on report
compute sum of sw_cnt on report
compute sum of Mb on report
var redoMbytes number;
select trunc(first_time) d1
       , count(*) sw_cnt
       , count(*) * :redoMbytes Mb
from v$log_history
group by trunc(first_time)
order by 1;
begin
   select max(bytes)/1024/1024 into :redoMbytes from v$log;
end;
/
print redoMbytes
spool off



Check for Large Table Full Scans

spool large_table_scans.txt
--Find Large Table Scans
set linesize 132
SELECT substr(table_owner,1,10) Owner,

       substr(table_name,1,15) Table_Name,
       size_kb, statement_count, reference_count,
       substr(executions,1,4) Exec,
       substr(executions * reference_count,1,8) tot_scans
FROM (SELECT a.object_owner table_owner,
             a.object_name table_name,
             b.segment_type table_type,
             b.bytes / 1024 size_kb,
             SUM(c.executions ) executions,
             COUNT( DISTINCT a.hash_value ) statement_count,
             COUNT( * ) reference_count
      FROM sys.v_$sql_plan a, sys.dba_segments b, sys.v_$sql c
      WHERE a.object_owner (+) = b.owner
        AND a.object_name (+) = b.segment_name
        AND b.segment_type IN ('TABLE', 'TABLE PARTITION')
        AND a.operation LIKE '%TABLE%'
        AND a.options = 'FULL'
        AND a.hash_value = c.hash_value
        AND b.bytes / 1024 > 1024
        AND
a.object_owner != 'SYS'
      GROUP BY a.object_owner, a.object_name, a.operation, b.bytes/1024, b.segment_type
      ORDER BY 4 DESC, 1, 2 );
spool off



spool recent_full_table_scans.txt
-- Recent full table scan
-- Should be run as SYS user

set verify off
col object_name form a30
col
o.owner     form a15
PROMPT Column flag in x$bh table is set to value 0x80000, when
PROMPT block was read by a sequential scan.
SELECT o.object_name,o.object_type,o.owner, count(*)
   FROM dba_objects o,x$bh x
   WHERE x.obj=o.object_id
     AND o.object_type='TABLE'
     AND standard.bitand(x.flag,524288)>0
     AND o.owner<>'SYS'
having count(*) > 2
group by  o.object_name,o.object_type,o.owner
order by 4 desc;

spool off

spool unused_indexes.txt
-- Do these tables contain indexes ??
-- This query creates a mini "unused indexes" report that you can use to ensure that
-- any large tables that are being scanned on your system have the proper indexing scheme.
SELECT DISTINCT substr(a.object_owner,1,10) table_owner,
                substr(a.object_name,1,15) table_name,
                b.bytes / 1024 size_kb,
                d.index_name
FROM sys.v_$sql_plan a, sys.dba_segments b, sys.dba_indexes d
WHERE a.object_owner (+) = b.owner
  AND a.object_name (+) = b.segment_name
  AND b.segment_type IN ('TABLE', 'TABLE PARTITION')
  AND a.operation LIKE '%TABLE%'
  AND a.options = 'FULL'
  AND b.bytes / 1024 > 1024
  AND b.segment_name = d.table_name
  AND b.owner = d.table_owner
  AND b.owner != 'SYS'

ORDER BY 1, 2;
spool off



spool physical_IO.txt
--How much physical I/O, etc., a large table scan causes on a system
--It displays I/O and some wait metrics that can give a DBA more insight into what Oracle is doing behind the scenes to access the object.
--Solution:
Create indexes, force use with hints
SELECT DISTINCT substr(a.object_owner,1,8) table_owner,
                substr(a.object_name,1,15) table_name, 
                b.bytes / 1024 size_kb,
                substr(c.tablespace_name,1,10) Tablespace,
                substr(c.statistic_name,1,27) Statistic_Name ,
                substr(c.value,1,5) Value
FROM sys.v_$sql_plan a,
     sys.dba_segments b,
     sys.v_$segment_statistics c
WHERE a.object_owner (+) = b.owner
AND   a.object_name (+) = b.segment_name
AND   b.segment_type IN ('TABLE', 'TABLE PARTITION')
AND   a.operation LIKE '%TABLE%'
AND   a.options = 'FULL'
AND   b.bytes / 1024 > 1024
AND   b.owner = c.owner
AND   b.owner = upper('&OWNER')
AND   b.segment_name = c.object_name
ORDER BY 1, 2;

spool off



Solution
Create indexes, force use with hints



Check for Small Table and Index  Full-Scans
spool Object_Access.txt
--
You detect this by watching db file scattered reads' on top 5 wait events
set heading on
set feedback on
set linesize 120

ttitle 'Full Table Scans and Counts|  |The "K" indicates that the table is in the KEEP Pool.'

select substr(p.owner,1,10) owner, substr(p.name,1,30) name, t.num_rows,
--   ltrim(t.cache) ch,
       decode(t.buffer_pool,'KEEP','Y','DEFAULT','N') K,
       s.blocks blocks, sum(a.executions) nbr_FTS
from dba_tables t, dba_segments s, v$sqlarea    a,
    (select distinct address, object_owner owner, object_name name
        from v$sql_plan
        where operation = 'TABLE ACCESS' 
          and options = 'FULL') p
where  a.address = p.address
   and t.owner = s.owner
   and t.table_name = s.segment_name
   and t.table_name = p.name
   and t.owner = p.owner
   and t.owner = upper('&OWNER')
having sum(a.executions) > 1
group by p.owner, p.name, t.num_rows, t.cache, t.buffer_pool, s.blocks
order by sum(a.executions) desc;

column nbr_scans  format 999,999,999
column num_rows   format 999,999,999
column tbl_blocks format 999,999,999
column owner      format a15;
column table_name format a25;
column index_name format a25;
ttitle 'Index full scans and counts'
select p.owner, d.table_name, p.name index_name,
       seg.blocks tbl_blocks, sum(s.executions) nbr_scans
from dba_segments seg, v$sqlarea s, dba_indexes d,
  (select distinct address, object_owner owner, object_name name
   from v$sql_plan
   where  operation = 'INDEX'
      and options = 'FULL SCAN') p
where  d.index_name = p.name
   and s.address = p.address
   and d.table_name = seg.segment_name
   and seg.owner = p.owner
   and seg.owner = upper('&OWNER')
having sum(s.executions) > 9
group by p.owner, d.table_name, p.name, seg.blocks
order by sum(s.executions) desc;


ttitle 'Index range scans and counts'
select p.owner, d.table_name, p.name index_name,
       seg.blocks tbl_blocks, sum(s.executions) nbr_scans
from dba_segments seg, v$sqlarea s, dba_indexes d,
  (select distinct address, object_owner owner, object_name name
   from v$sql_plan
   where  operation = 'INDEX'
      and options = 'RANGE SCAN') p
where  d.index_name = p.name
   and s.address = p.address
   and d.table_name = seg.segment_name
   and seg.owner = p.owner
   and seg.owner = upper('&OWNER')
having sum(s.executions) > 9
group by p.owner, d.table_name, p.name, seg.blocks
order by sum(s.executions) desc;


ttitle 'Index unique scans and counts'
select p.owner, d.table_name, p.name index_name, sum(s.executions) nbr_scans
from v$sqlarea s, dba_indexes d,
  (select distinct address, object_owner owner, object_name name
   from v$sql_plan
   where  operation = 'INDEX'
      and options = 'UNIQUE SCAN') p
where  d.index_name = p.name
   and s.address = p.address
having sum(s.executions) > 9
group by p.owner, d.table_name, p.name
order by sum(s.executions) desc;


spool off

Solution
Check if is it OK those access. Pin those tables and indexes.
Example: alter table/index …. Storage (buffer_pool keep);



Check for many indexes on data buffer cache
Query the tables $BH and user_indexes

spool indexused_on_data_buffer_cache.txt
--Solution:
Adjust parameters OPTIMIZER_INDEX_COST_ADJ=15 AND OPTIMIZER_INDEX_CACHING=85 with the % of indexes on data buffer cache
/* Recently used indexes */
/* Should be run as SYS user */
set serverout on size 1000000
set verify off
column owner format a20 trunc
column segment_name format a30 trunc
select distinct b.owner, b.segment_name
   from x$bh a, dba_extents b        
   where b.file_id=a.dbarfil
     and a.dbablk between b.block_id
     and b.block_id+blocks-1
     and segment_type='INDEX'
     and b.owner = upper('&OWNER')

/
spool off



Solution
Adjust parameters OPTIMIZER_INDEX_COST_ADJ=15 AND OPTIMIZER_INDEX_CACHING=85 with the % of indexes on data buffer cache


Check for skewed Indexes (Unbalanced)
Another performance issue could be that your indexes are skewed, this happens when you have a lot of DML activity in your tables. In order to check that, perform the following steps:
1- Analyze your indexes with compute (or estimate if the you have more than 100,000 rows in your table)
       analyze index xxxxxxx  compute statistics;

2- Run the following query to see the BLEVEL of the index and if you need to rebuid them. If the blevel is higher than 3, you should rebuild it.
spool Unbalanced_Indexes.txt
--
If the blevel is higher than 3, you should rebuild it
select substr(table_name,1,15) "Table Name",
       substr(index_name,1,20) "Index Name", blevel,
       decode(blevel,0,'OK BLEVEL',1,'OK BLEVEL',
              2,'OK BLEVEL',3,'OK BLEVEL', null,'?????????','***BLEVEL HIGH****') OK
  from dba_indexes
  where owner=UPPER('&OWNER')
  order by 1,2;

spool off

3- Gather more index statistics using the VALIDATE STRUCTURE option of the ANALYZE command to populate the INDEX_STATS virtual table.
        analyze index xxxxxxxxx    validate structure; 

4-The INDEX_STATS view will hold information for one index at a time: it will never contain more than one row. Therefore you need to query this view before you analyze next index
    select name "INDEXNAME", HEIGHT,
              DEL_LF_ROWS*100/decode(LF_ROWS, 0, 1, LF_ROWS) PCT_DELETED,        
             (LF_ROWS-DISTINCT_KEYS)*100/ decode(LF_ROWS,0,1,LF_ROWS) DISTINCTIVENESS
         from index_stats;

The PCT_DELETED column shows what percent of leaf entries (index entries) have been deleted and remain unfilled. The more deleted entries exist on an index, the more unbalanced the index becomes. If the PCT_DELETED is 20% or higher, the index is candidate for rebuilding.  If you can afford to rebuild indexes more frequently, then do so if the value is higher than 10%. Leaving indexes with high PCT_DELETED without rebuild might cause excessive redo allocation on some systems.
The DISTINCTIVENESS column shows how often a value for the column(s) of the index is repeated on average. For example, if a table has 10000 records and 9000 distinct  SSN values, the formula would result in (10000-9000) x 100 / 10000 = 10. This shows a good distribution of values. If, however, the table has 10000 records and only 2 distinct SSN values, the formula would result in (10000-2) x 100 /10000 = 99.98. This shows that there are very few distinct values as a percentage of total records in the column. Such columns are not candidates for a rebuild but good candidates for bitmapped indexes.

The following PL/SQL code will analyze your indexes and then create a report of the indexes to rebuild. Run it as the owner of the indexes.
declare
   pMaxHeight integer := 3;
   pMaxLeafsDeleted integer := 20;

   cursor csrIndexStats is
      select name, height, lf_rows as leafRows,
             del_lf_rows as leafRowsDeleted
         from index_stats;
   vIndexStats csrIndexStats%rowtype;

   cursor csrGlobalIndexes is
      select index_name, tablespace_name
      from user_indexes
         where partitioned = 'NO';

   cursor csrLocalIndexes is
      select index_name, partition_name, tablespace_name
         from user_ind_partitions
         where status = 'USABLE';

   vCount integer := 0;

begin
   dbms_output.enable(100000);

   /* Working with Global/Normal indexes */
   for vIndexRec in csrGlobalIndexes
   loop
      execute immediate 'analyze index ' || vIndexRec.index_name ||' validate structure';

      open csrIndexStats;
      fetch csrIndexStats into vIndexStats;
      if csrIndexStats%FOUND then
         if (vIndexStats.height > pMaxHeight)
            or (vIndexStats.leafRows > 0
            and vIndexStats.leafRowsDeleted > 0
            and (vIndexStats.leafRowsDeleted * 100 / vIndexStats.leafRows) > pMaxLeafsDeleted) then
            vCount := vCount + 1;
            dbms_output.put_line('Rebuilding index ' || vIndexRec.index_name || '...');
         
            execute immediate 'alter index ' || vIndexRec.index_name ||
                              ' rebuild online parallel nologging compute statistics' ||
                              ' tablespace ' || vIndexRec.tablespace_name;
         end if;
      end if;
      close csrIndexStats;

   end loop;

   dbms_output.put_line('Global indexes rebuilt: ' || to_char(vCount));
   vCount := 0;

   /* Local indexes */
   for vIndexRec in csrLocalIndexes
   loop
      execute immediate 'analyze index ' || vIndexRec.index_name ||
                        ' partition (' || vIndexRec.partition_name ||
                        ') validate structure';
     
      open csrIndexStats;
      fetch csrIndexStats into vIndexStats;
      if csrIndexStats%FOUND then
         if (vIndexStats.height > pMaxHeight)
           or (vIndexStats.leafRows > 0
           and vIndexStats.leafRowsDeleted > 0
           and (vIndexStats.leafRowsDeleted * 100 / vIndexStats.leafRows) > pMaxLeafsDeleted) then
            vCount := vCount + 1;
            dbms_output.put_line('Rebuilding index ' || vIndexRec.index_name || '...');
            execute immediate 'alter index ' || vIndexRec.index_name ||
                           ' rebuild partition ' || vIndexRec.partition_name ||
                           '
online parallel nologging estimate statistics' ||
                           ' tablespace ' || vIndexRec.tablespace_name;
         end if;
      end if;
      close csrIndexStats;
   end loop;

   dbms_output.put_line('Local indexes rebuilt: ' || to_char(vCount));
end RebuildUnbalancedIndexes;
/



Fragmentation on DB Objects
Another performance problem may be the DB fragmentation. Run the following to detect:
REM Segments that are fragmented and level of fragmentation
REM It counts number of extents
set heading on
set termout on
set pagesize 66
set line 132
select substr(de.owner,1,8) "Owner",
       substr(de.segment_type,1,8) "Seg_Type",
       substr(de.segment_name,1,25) "Segment_Name",
       substr(de.tablespace_name,1,15) "Tblspace_Name",
       count(*) "Frag NEED",
       substr(df.name,1,40) "DataFile_Name"
from sys.dba_extents de, v$datafile df
where de.owner = UPPER('&OWNER')
  and de.file_id = df.file#
  and de.segment_type = 'TABLE'
group by de.owner, de.segment_name, de.segment_type, de.tablespace_name, df.name
having count(*) > 4
order by count(*) asc;


Allocate Files properly (Tuning buffer busy waits by file)
Check for Buffer busy Waits.
This view (based on X$KCBWAIT) reports the number of times an instance has had buffer busy waits on different classes of blocks since the instance was started.
Oracle also provides a companion view called X$KCBFWAIT which duplicates the function of X$KCBWAIT, but summarises the waits by file id.

SPOOL file_wait.txt
SET linesize 180
SET pagesize 9000
COLUMN filename  FORMAT a40           HEAD "File Name"
COLUMN file#     FORMAT 99            HEAD "F#"
COLUMN ct        FORMAT 999,999,999   HEAD "Waits"
COLUMN time      FORMAT 999,999,999   HEAD "Time"
COLUMN avg       FORMAT 999.999       HEAD "Avg Time"
SELECT indx+1 file#
     , b.name filename
     , count  ct
     , time
     , time/(DECODE(count,0,1,count)) avg
FROM  x$kcbfwait a, v$datafile b
WHERE indx < (select count(*) from v$datafile)
  AND a.indx+1 = b.file#
order by ct desc 
/
spool off


Checking ACTIVE Statements
spool Active_Statements.txt
set linesize 110
--Extracting the active SQL a user is executing
select sesion.sid,
       substr(sesion.username,1,15) username,
       substr(optimizer_mode,1,10) opt_mode,
       hash_value,
       address,
       cpu_time,
       elapsed_time,
       sql_text
  from v$sqlarea sqlarea, v$session sesion
 where sesion.sql_hash_value = sqlarea.hash_value
   and sesion.sql_address    = sqlarea.address
   and sesion.username is not null;


--I/O being done by an active SQL statement
select sess_io.sid,
       sess_io.block_gets,
       sess_io.consistent_gets,
       sess_io.physical_reads,
       sess_io.block_changes,
       sess_io.consistent_changes
  from v$sess_io sess_io, v$session sesion
 where sesion.sid = sess_io.sid
   and sesion.username is not null;


-- If by chance the query shown earlier in the V$SQLAREA view did not show your full SQL text
-- because it was larger than 1000 characters, this V$SQLTEXT view should be queried
-- to extract the full SQL. It is a piece by piece of 64 characters by line,
-- that needs to be ordered by the column PIECE.
-- SQL to show the full SQL executing for active sessions
select sesion.sid,
       sql_text
  from v$sqltext sqltext, v$session sesion
 where sesion.sql_hash_value = sqltext.hash_value
   and sesion.sql_address    = sqltext.address
   and sesion.username is not null
 order by sqltext.piece;
spool off


Use IPC for local connections
When a process is on the same machine as the server, use the IPC protocol for connectivity instead of TCP. Inner Process Communication on the same machine does not have the overhead of packet building and deciphering that TCP has. I've seen a SQL job that runs in 10 minutes using TCP on a local machine run as fast as one minute using an IPC connection.
You can set up your tnsnames file like this on a local machine so that local connection with use IPC connections first and then TCP connection second.
PROD =
  (DESCRIPTION =
    (ADDRESS_LIST =
      (ADDRESS = (PROTOCOL = IPC)(Key = IPCKEY))
      (ADDRESS = (PROTOCOL = TCP)(HOST = MYHOST)(PORT = 1521))
    )
    (CONNECT_DATA =
      (SID = PROD)
    )
  )

 

Check undo parameters
When you are working with UNDO, there are two important things to consider:
The size of the UNDO tablespace
The UNDO_RETENTION parameter.
To get information of your current settings you can use the following query:

set serveroutput on

DECLARE
 tsn    VARCHAR2(40);
 tss    NUMBER(10);
 aex    BOOLEAN;
 unr    NUMBER(5);
 rgt    BOOLEAN;
 retval BOOLEAN;
BEGIN
  retval := dbms_undo_adv.undo_info(tsn, tss, aex, unr, rgt);
  dbms_output.put_line('UNDO Tablespace is: ' || tsn);
  dbms_output.put_line('UNDO Tablespace size is: ' || TO_CHAR(tss));

  IF aex THEN
    dbms_output.put_line('Undo Autoextend is set to: TRUE');
  ELSE
    dbms_output.put_line('Undo Autoextend is set to: FALSE');
  END IF;

  dbms_output.put_line('Undo Retention is: ' || TO_CHAR(unr));

  IF rgt THEN
    dbms_output.put_line('Undo Guarantee is set to: TRUE');
  ELSE
    dbms_output.put_line('Undo Guarantee is set to: FALSE');
  END IF;
END;
/

There are two ways to proceed to optimize your resources.
You can choose to allocate a specific size for the UNDO tablespace and then set the UNDO_RETENTION parameter to an optimal value according to the UNDO size and the database activity. If your disk space is limited and you do not want to allocate more space than necessary to the UNDO tablespace, this is the way to proceed.
If you are not limited by disk space, then it would be better to choose the UNDO_RETENTION time that is best for you (for FLASHBACK, etc.). Allocate the appropriate size to the UNDO tablespace according to the database activity.
This tip help you get the information you need whatever the method you choose.
spool Check_Undo_Parameters.txt
set serverout on size 1000000

set feedback off
set heading off
set lines 132
declare
  cursor get_undo_stat is
         select d.undo_size/(1024*1024) "C1",
                substr(e.value,1,25)    "C2",
                (to_number(e.value) * to_number(f.value) * g.undo_block_per_sec) / (1024*1024) "C3",
                round((d.undo_size / (to_number(f.value) * g.undo_block_per_sec)))             "C4"
           from (select sum(a.bytes) undo_size
                   from v$datafile      a,
                        v$tablespace    b,
                        dba_tablespaces c
                  where c.contents = 'UNDO'
                    and c.status = 'ONLINE'
                    and b.name = c.tablespace_name
                    and a.ts# = b.ts#)  d,
                v$parameter e,
                v$parameter f,
                (select max(undoblks/((end_time-begin_time)*3600*24))undo_block_per_sec from v$undostat)  g
          where e.name = 'undo_retention'
            and f.name = 'db_block_size';
begin
dbms_output.put_line(chr(10)||chr(10)||chr(10)||chr(10) || 'To optimize UNDO you have two choices :'); dbms_output.put_line('====================================================' || chr(10));
  for rec1 in get_undo_stat loop
      dbms_output.put_line('A) Adjust UNDO tablespace size according to UNDO_RETENTION :' || chr(10));
      dbms_output.put_line(rpad('ACTUAL UNDO SIZE ',61,'.')|| ' : ' || TO_CHAR(rec1.c1,'999999') || ' MEGS');
      dbms_output.put_line(rpad('OPTIMAL UNDO SIZE WITH ACTUAL UNDO_RETENTION (' ||
                                                         ltrim(TO_CHAR(rec1.c2/60,'999999'))
                                                      || ' MINUTES) ',61,'.') || ' : '
                                                      || TO_CHAR(rec1.c3,'999999') || ' MEGS');
      dbms_output.put_line(chr(10));
      dbms_output.put_line('B) Adjust UNDO_RETENTION according to UNDO tablespace size :' || chr(10));
      dbms_output.put_line(rpad('ACTUAL UNDO RETENTION ',61,'.') || ' : ' || TO_CHAR(rec1.c2/60,'999999')
                                                 || ' MINUTES');
      dbms_output.put_line(rpad('OPTIMAL UNDO RETENTION WITH ACTUAL UNDO SIZE (' || ltrim(TO_CHAR(rec1.c1,'999999'))
                                                 || ' MEGS) ',61,'.') || ' : ' || TO_CHAR(rec1.c4/60,'999999')
                                                 || ' MINUTES');
  end loop;
dbms_output.put_line(chr(10)||chr(10));
end;
/

select 'Number of "ORA-01555 (Snapshot too old)" encountered since the last startup of the instance : ' || sum(ssolderrcnt)
  from v$undostat;
spool off



Detect High SQL parse calls
One of the first things that an Oracle DBA does when checking the performance of any database is to check for high-use SQL statements. The script below will display all SQL where the number of parse calls is more than twice the number of SQL executions. The output from this script is a good starting point for detailed SQL tuning. This query can also be modified to display the most frequently executed SQL statements that reside in the library cache.
prompt **********************************************************
prompt SQL High parse calls
prompt **********************************************************
select sql_text, parse_calls, executions
  from v$sqlarea
  where parse_calls > 300
   and executions < 2*parse_calls
   and executions > 1;

This script is great for finding non-reusable SQL statements that contain embedded literals. As you may know, non-reusable SQL statements place a heavy burden on the Oracle library cache. When cursor_sharing=FORCE, Oracle8i will re-write the SQL with literal values so it can use a host variable instead. This is a great “silver bullet” for system where the literal SQL cannot be changed.


Monitor Open and Cached Cursors
Open cursors take up space in the shared pool, in the library cache. To keep a renegade session from filling up the library cache, or clogging the CPU with millions of parse requests, we set the parameter OPEN_CURSORS.
OPEN_CURSORS sets the maximum number of cursors each session can have open, per session. For example, if OPEN_CURSORS is set to 1000, then each session can have up to 1000 cursors open at one time. If a single session has OPEN_CURSORS # of cursors open, it will get an ora-1000 error when it tries to open one more cursor.
The default is value for OPEN_CURSORS is 50, but Oracle recommends that you set this to at least 500 for most applications. Some applications may need more, eg. web applications that have dozens to hundreds of users sharing a pool of sessions. Tom Kyte recommends setting it around 1000.

If SESSION_CACHED_CURSORS is not set, it defaults to 0 and no cursors will be cached for your session. (Your cursors will still be cached in the shared pool, but your session will have to find them there.) If it is set, then when a parse request is issued, Oracle checks the library cache to see whether more than 3 parse requests have been issued for that statement. If so, Oracle moves the session cursor associated with that statement into the session cursor cache. Subsequent parse requests for that statement by the same session are then filled from the session cursor cache, thus avoiding even a soft parse. (Technically, a parse can't be completely avoided; a "softer" soft parse is done that's faster and requires less CPU.)

The obvious advantage to caching cursors by session is reduced parse times, which leads to faster overall execution times. This is especially so for applications like Oracle Forms applications, where switching from one form to another will close all the session cursors opened for the first form. Switching back then opens identical cursors. So caching cursors by session really cuts down on reparsing.
There's another advantage, though. Since a session doesn't have to go looking in the library cache for previously parsed SQL, caching cursors by session results in less use of the library cache and shared pool latches. These are often points of contention for busy OLTP systems. Cutting down on latch use cuts down on latch waits, providing not only an increase in speed but an increase in scalability.

This will give the number of currently opened cursors, by session:
--total cursors open, by session
select a.value, s.username, s.sid, s.serial#
   from v$sesstat a, v$statname b, v$session s
   where a.statistic# = b.statistic#  and s.sid=a.sid
      and b.name = 'opened cursors current';

If you're running several N-tiered applications with multiple webservers, you may find it useful to monitor open cursors by username and machine:
--total cursors open, by username & machine
select sum(a.value) total_cur, avg(a.value) avg_cur, max(a.value) max_cur, s.username, s.machine
  from v$sesstat a, v$statname b, v$session s
  where a.statistic# = b.statistic#  and s.sid=a.sid
    and b.name = 'opened cursors current'
  group by s.username, s.machine
  order by 1 desc;

The best advice for tuning OPEN_CURSORS is not to tune it. Set it high enough that you won't have to worry about it. If your sessions are running close to the limit you've set for OPEN_CURSORS, raise it. If you set OPEN_CURSORS to a high value, this doesn't mean that every session will have that number of cursors open. Cursors are opened on an as-needed basis

To see if you've set OPEN_CURSORS high enough, monitor v$sesstat for the maximum opened cursors current. If your sessions are running close to the limit, up the value of OPEN_CURSORS.
select max(a.value) as highest_open_cur, p.value as max_open_cur
  from v$sesstat a, v$statname b, v$parameter p
  where a.statistic# = b.statistic#
    and b.name = 'opened cursors current'
    and p.name= 'open_cursors'
  group by p.value;
HIGHEST_OPEN_CUR MAX_OPEN_CUR
---------------- ------------
            1953         2500

Monitoring the session cursor cache
v$sesstat also provides a statistic to monitor the number of cursors each session has in its session cursor cache.
--session cached cursors, by session
select a.value, s.username, s.sid, s.serial#
from v$sesstat a, v$statname b, v$session s
where a.statistic# = b.statistic# and s.sid=a.sid
and b.name = 'session cursor cache count' ;

You can also see directly what is in the session cursor cache by querying v$open_cursor. v$open_cursor lists session cached cursors by SID, and includes the first few characters of the statement and the sql_id, so you can actually tell what the cursors are for.

select c.user_name, c.sid, sql.sql_text
from v$open_cursor c, v$sql sql
where c.sql_id=sql.sql_id
and c.sid=&sid;

Tuning SESSION_CACHED_CURSORS
If you choose to use SESSION_CACHED_CURSORS to help out an application that is continually closing and reopening cursors, you can monitor its effectiveness via two more statistics in v$sesstat. The statistic "session cursor cache hits" reflects the number of times that a statement the session sent for parsing was found in the session cursor cache, meaning it didn't have to be reparsed and your session didn't have to search through the library cache for it. You can compare this to the statistic "parse count (total)"; subtract "session cursor cache hits" from "parse count (total)" to see the number of parses that actually occurred.
select cach.value cache_hits, prs.value all_parses, prs.value-cach.value sess_cur_cache_not_used
from v$sesstat cach, v$sesstat prs, v$statname nm1, v$statname nm2
where cach.statistic# = nm1.statistic#
and nm1.name = 'session cursor cache hits'
and prs.statistic#=nm2.statistic#
and nm2.name= 'parse count (total)'
and cach.sid= &sid and prs.sid= cach.sid ;

Enter value for sid: 947
old 8: and cach.sid= &sid and prs.sid= cach.sid
new 8: and cach.sid= 947 and prs.sid= cach.sid

CACHE_HITS ALL_PARSES SESS_CUR_CACHE_NOT_USED
---------- ---------- -----------------------
106 210 104

Monitor this in concurrence with the session cursor cache count.

--session cached cursors, for a given SID, compared to max
select a.value curr_cached, p.value max_cached, s.username, s.sid, s.serial#
from v$sesstat a, v$statname b, v$session s, v$parameter2 p
where a.statistic# = b.statistic# and s.sid=a.sid and a.sid=&sid
and p.name='session_cached_cursors'
and b.name = 'session cursor cache count' ;


Detect Top 10 Queries in SQL Area

spool top10_sqlarea.txt
/*
This script queries the SQL area ordered by the the average cost of the statement.
The "Avg Cost" row is basically the No. of Buffer Gets per Rows processed.
Where no rows are processed, all Buffer Gets are reported for the statement.
The script also lists any potential candidates for a converting to stored procedures
by running a case insensitive query.
*/

set pagesize 66 linesize 132
set echo off

column executions      heading "Execs"         format 99999999
column rows_processed  heading "Rows Procd"    format 99999999
column loads           heading "Loads"         format 999999.99
column buffer_gets     heading "Buffer Gets"
column disk_reads      heading "Disk Reads"
column elapsed_time    heading "Elasped Time"
column cpu_time        heading "CPU Time"
column sql_text        heading "SQL Text"      format a120 wrap
column avg_cost        heading "Avg Cost"      format 99999999
column gets_per_exec   heading "Gets Per Exec" format 99999999
column reads_per_exec  heading "Read Per Exec" format 99999999
column rows_per_exec   heading "Rows Per Exec" format 99999999

break on report
compute sum  of rows_processed  on report
compute sum  of executions      on report
compute avg  of avg_cost        on report
compute avg  of gets_per_exec   on report
compute avg  of reads_per_exec  on report
compute avg  of row_per_exec    on report


PROMPT
PROMPT Top 10 most expensive SQL by Elapsed Time...
PROMPT
select rownum as rank, a.*
  from ( select elapsed_Time, executions, buffer_gets, disk_reads, cpu_time, hash_value, sql_text
            from  v$sqlarea
            where elapsed_time > 20000
            order by elapsed_time desc) a
  where rownum < 11;


PROMPT
PROMPT Top 10 most expensive SQL by CPU Time...
PROMPT
select rownum as rank, a.*
  from ( select elapsed_Time, executions, buffer_gets, disk_reads, cpu_time, hash_value, sql_text
           from  v$sqlarea
           where cpu_time > 20000
           order by cpu_time desc) a
where rownum < 11;


PROMPT
PROMPT Top 10 most expensive SQL by Buffer Gets by Executions...
PROMPT
select rownum as rank, a.*
from (select buffer_gets, executions,
             buffer_gets/ decode(executions,0,1, executions) gets_per_exec,
             hash_value, sql_text
        from  v$sqlarea
        where buffer_gets > 50000
        order by buffer_gets desc) a
where rownum < 11;


PROMPT
PROMPT Top 10 most expensive SQL by Physical Reads by Executions...
PROMPT
select rownum as rank, a.*
from (select disk_reads, executions,
             disk_reads / decode(executions,0,1, executions) reads_per_exec,
             hash_value, sql_text
       from  v$sqlarea
       where disk_reads > 10000
       order by disk_reads desc) a
where rownum < 11;


PROMPT
PROMPT Top 10 most expensive SQL by Rows Processed by Executions...
PROMPT
select rownum as rank, a.*
from (select rows_processed, executions,
             rows_processed / decode(executions,0,1, executions) rows_per_exec,
             hash_value, sql_text
        from  v$sqlarea
        where rows_processed > 10000
        order by rows_processed desc) a
  where rownum < 11;


PROMPT
PROMPT Top 10 most expensive SQL by Buffer Gets vs Rows Processed...
PROMPT
select rownum as rank, a.*
from ( select buffer_gets, lpad(rows_processed ||
              decode(users_opening + users_executing, 0, ' ','*'),20) "rows_processed",
              executions, loads,
              (decode(rows_processed,0,1,1)) * buffer_gets/ decode(rows_processed,0,1,rows_processed) avg_cost,
              sql_text
        from  v$sqlarea
        where decode(rows_processed,0,1,1) * buffer_gets/ decode(rows_processed,0,1,rows_processed) > 10000
        order by 5 desc) a
where rownum < 11;


rem Check to see if there are any candidates for procedures or
rem for using bind variables. Check this by comparing UPPER
rem
rem This May be a candidate application for using the init.ora parameter
rem CURSOR_SHARING = FORCE|SIMILAR

select rownum as rank, a.*
from (select upper(substr(sql_text, 1, 65)) sqltext, count(*)
        from v$sqlarea  
        group by upper(substr(sql_text, 1, 65))
        having count(*) > 1
        order by count(*) desc) a
where rownum < 11;

prompt Output spooled to
top10_sqlarea.txt
spool off


If you want to see the full text of the sql statement, you can run the following query:
select v2.sql_text, v2.address
from v$sqlarea v1, v$sqltext v2
where v1.address=v2.address
and v1.sql_text like 'SELECT COUNT(*) FROM DEPT%'
order by v2.address, v2.piece;

The next query returns the SQL text from a hash value that must be determined from each v$sqlarea row in question.
select sql_text
from v$sqltext
where hash_value=&hash_value
order by piece;

Check for Indexes not Used and HOT Tables
If you want to know if an index has ever been used since instance startup, or the use of a specific table,  the solution is quite easy.
Simply query V$SEGMENT_STATISTICS to see if there has even been a physical read on the index in question. Queries similar to the following can help:
select index_name from all_indexes
  where owner = 'FRAUDGUARD'
   and index_name not in ( select object_name
                   from v$segment_statistics
                   where owner='FRAUDGUARD'
                   and statistic_name='physical reads');

If you get no rows, that means that all your indexes has been used.

Next, we'll determine the top 10 tables that have incurred the most physical I/O operations.
select table_name,total_phys_io
  from (select owner||'.'||object_name as table_name, sum(value) as total_phys_io
          from v$segment_statistics
          where owner = upper('&OWNER')
            and object_type='TABLE'

            and statistic_name in ('physical reads','physical reads direct','physical writes','physical writes direct')
          group by owner||'.'||object_name
          order by total_phys_io desc)
where rownum <=10;

TABLE_NAME                                                    TOTAL_PHYS_IO
------------------------------------------------------------- -------------
FGUARD9X.ACCOUNT                                                 1121145562
FGUARD9X.ISSUEDATA                                                228542692
FGUARD9X.SIGNATURES                                                81264532
FGUARD9X.SIGNATORY                                                  8931066
FGUARD9X.EXCEPTIONITEM                                              2277715
FGUARD9X.PROCESSLOG                                                  128644
FGUARD9X.DOCUMENT                                                     28909
FGUARD9X.IMPORTSETINSTANCE                                            10590
FGUARD9X.VALIDATEDENTITY                                               6852
FGUARD9X.WORKFLOWENTITY                                                2679


The query above eliminated any data dictionary tables from the results. It should now be clear what the exact table is that experiences the most physical I/O operations. Appropriate actions can now be taken to isolate this potential hotspot from other highly active database segments.

If you've ever dealt with wait events, you may have seen the 'buffer busy waits' event. This event occurs when one session is waiting on another session to read the buffer into the cache, or some other session is changing the buffer. This even can often be seen when querying V$SYSTEM_EVENT.
If I query my database, I have approximately 13 million waits on this specific event.

select event,total_waits from v$system_event

    where event='buffer busy waits';

EVENT                                    TOTAL_WAITS
---------------------------------------- -----------
buffer busy waits                           12976210

The big question is to determine which segments are contributing to this overall wait event. Querying V$SEGMENT_STATISTICS can help us determine the answer.

select substr(segment_name,1,30) segment_name,
       object_type,total_buff_busy_waits

  from (select owner||'.'||object_name as segment_name,object_type, value as total_buff_busy_waits
          from v$segment_statistics
          where statistic_name in ('buffer busy waits')
          order by total_buff_busy_waits desc)
where rownum <=10;

SEGMENT_NAME                        OBJECT_TYPE   TOTAL_BUFF_BUSY_WAITS
----------------------------------- ------------- ---------------------
WEBMAP.SDE_BLK_1103                 TABLE                      10522135
WEBMAP.SDE_BLK_804                  TABLE                       1176185
SRTM.SDE_BLK_1101                   TABLE                        651175
WEBMAP.SDE_BLK_804_UK               INDEX                        100242
SYS.DBMS_LOCK_ALLOCATED             TABLE                         64695
NED.SDE_BLK_1002                    TABLE                         48582
WEBMAP.BTS_ROADS_MD                 TABLE                         27068
WEBMAP.SDE_BLK_1103_UK              INDEX                         25707
ARCIMS.SDE_LOGFILE_DATA_IDX1        INDEX                         24618
NED.SDE_BLK_62                      TABLE                         14710

From the query above, we can see that one specific table contributed 10.5 million, or approximately 80%, of the total waits.


If you ever want to know why the access to a specific table (Example: EMP) is slow, one of the first actions would be to run:
select statistic_name, value
  from v$segment_statistics
 where owner='SCOTT' and object_name = 'EMP';

STATISTIC_NAME                                                        VALUE

---------------------------------------------------------------- ----------
logical reads                                                         17653
buffer busy waits                                                      1744
db block changes                                                      16234
physical reads                                                         1110
physical writes                                                         516
physical reads direct                                                     0
physical writes direct                                                    0
global cache cr blocks served                                             0
global cache current blocks served                                        0
ITL waits                                                                 0
row lock waits                                                            6

From the above query we can see that EMP is forever being modified and rarely just being selected. And those modifications has problems because of the high number of bussy waits (users try to access to the same block). Perhaps if that table has a higher PCTFREE the problem would disappear. Or maybe this is a case for ASSM.



Detect and Resolve Buffer Busy Waits
Whenever multiple insert or update tasks access a table, it is possible that Oracle may be forced to wait to access the first block in the table.  The first block is called the segment header, and the segment header contains the freelist for the table. The number of freelists for any table should be set to the high-water mark of concurrent inserts or updates.
The script below will tell you if you have waits for table or index freelists.  If so, you need to identify the table and add additional freelists. You can add freelists with the ALTER table command.
The procedure for identifying the specific table associated with a freelist wait or a buffer busy wait is complex, but it is fully described in the book “Oracle High-Performance Tuning with STATSPACK.

column s_v   format 999,999,999 heading 'Total Requests' new_value tnr
column count format 99999990    heading ‘count’          new_value cnt
column proc                     heading 'Ratio of waits'
 
PROMPT Current v$waitstat freelist waits...
PROMPT
set heading on;
prompt - This displays the total current waits on freelists
select class, count
  from v$waitstat
  where class = 'free list';
    
prompt - This displays the total gets in the database
select sum(value) s_v
  from v$sysstat
  where name IN ('db block gets', 'consistent gets');
 
PROMPT - Here is the ratio
select &cnt/&tnr * 100 proc
  from dual;


Current v$waitstat freelist waits...
- This displays the total current waits on freelists
CLASS                  COUNT
------------------ ---------
free list                  0

- This displays the total gets in the database

Total Num of Requests
---------------------
            140318872

- Here is the ratio
Ratio in %
----------
         0



Please note the freelist contention also can be manifested as a buffer busy wait. This is because the block is already in the buffer, but cannot be accessed because another task has the segment header. The section below describes the process the block address associated with a wait. As we discussed, Oracle does not keep an accumulator to track individual buffer busy waits. To see them, you must create a script to detect them and then schedule the task to run frequently on your database server.
vi get_busy.ksh
#!/bin/ksh
# First, we must set the environment . . . .
export ORACLE_SID=proderp
export ORACLE_HOME=`cat /var/opt/oracle/oratab|grep \^$ORACLE_SID:|cut -f2 -d':'`
export PATH=$ORACLE_HOME/bin:$PATH
export SERVER_NAME=`uname -a|awk '{print $2}'`
typeset -u SERVER_NAME

# sample every 10 seconds
SAMPLE_TIME=10
while true
do
   #*************************************************************
   # Test to see if Oracle is accepting connections
   #*************************************************************
   $ORACLE_HOME/bin/sqlplus -s /<<! > /tmp/check_$ORACLE_SID.ora
   select * from v\$database;
   exit
   !
   #*************************************************************
   # If not, exit immediately . . .
   #*************************************************************
   check_stat=`cat /tmp/check_$ORACLE_SID.ora|grep -i error|wc -l`;
   oracle_num=`expr $check_stat`
   if [ $oracle_num -gt 0 ]
      then
      exit 0
   fi

   rm -f /export/home/oracle/statspack/busy.lst

   $ORACLE_HOME/bin/sqlplus -s perfstat/perfstat<<!> /tmp/busy.lst

   set feedback off;
   select sysdate, event, substr(tablespace_name,1,14), p2
       from v\$session_wait a,  dba_data_files  b
       where a.p1 = b.file_id;
   !

var=`cat /tmp/busy.lst|wc -l`

echo $var
if [[ $var -gt 1 ]];
 then
  echo
**********************************************************************"
  echo "There are waits"
  cat /tmp/busy.lst|mailx -s "Prod block wait found"\
  dpafumi at yahoo com
  echo
**********************************************************************"
 exit
fi

sleep $SAMPLE_TIME
done



 As we can see from this script, it probes the database for buffer busy waits every 10 seconds. When a buffer busy wait is found, it mails the date, tablespace name, and block number to the DBA. Here is an example of a block alert e-mail:

 SYSDATE   SUBSTR(TABLESP BLOCK
--------- -------------- ----------
28-DEC-00 APPLSYSD        25654


 Here we see that we have a block wait condition at block 25654 in the applsysd tablespace. The procedure for locating this block is beyond the scope of this tip, but complete directions are in Chapter 10 of Oracle High Performance Tuning with STATSPACK





One of the most confounding problems with Oracle is the resolution of buffer busy wait events. Buffer busy waits are common in an I/O-bound Oracle system, as evidenced by any system with read (sequential/scattered) waits in the top-five waits in the Oracle STATSPACK report, like this:

Top 5 Timed Events
                                                          % Total
 Event                         Waits        Time (s)     Ela Time
 --------------------------- ------------ ----------- -----------
 db file sequential read       2,598        7,146           48.54
 db file scattered read       25,519        3,246           22.04

 library cache load lock         673        1,363            9.26
 CPU time                      2,154          934            7.83
 log file parallel write      19,157          837            5.68

The main way to reduce buffer busy waits is to reduce the total I/O on the system. This can be done by tuning the SQL to access rows with fewer block reads (i.e., by adding indexes). Even if we have a huge db_cache_size, we may still see buffer busy waits, and increasing the buffer size won't help.
In order to look at system-wide wait events, we can query the v$system_event performance view. This view, shown below, provides the name of the wait event, the total number of waits and timeouts, the total time waited, and the average wait time per event.

spool Wait_Events.txt
select substr(event,1,25) event, total_waits, total_timeouts, time_waited, average_wait
from v$system_event
where  event like '%wait%'
order by 2 desc;
spool off

EVENT                       TOTAL_WAITS TOTAL_TIMEOUTS TIME_WAITED AVERAGE_WAIT
--------------------------- ----------- -------------- ----------- ------------
buffer busy waits                636528           1557      549700   .863591232
write complete waits               1193              0       14799   12.4048617
free buffer waits                  1601              0         622   .388507183
 
If you want to see all the events, you can try with:
set pages 999
set lines 90
column c1 heading 'Event|Name'             format a30
column c2 heading 'Total|Waits'            format 999,999,999
column c3 heading 'Seconds|Waiting'        format 999,999
column c4 heading 'Total|Timeouts'         format 999,999,999
column c5 heading 'Average|Wait|(in secs)' format 99.999
 
ttitle 'System-wide Wait Analysis|for current wait events'
 
select  event c1,  total_waits c2,  time_waited/100  c3,
   total_timeouts c4,  average_wait/100 c5
from sys.v_$system_event
where event not in (
    'dispatcher timer',
    'lock element cleanup',
    'Null event',
    'parallel query dequeue wait',
    'parallel query idle wait - Slaves',
    'pipe get',
    'PL/SQL lock timer',
    'pmon timer',
    'rdbms ipc message',
    'slave wait',
    'smon timer',
    'SQL*Net break/reset to client',
    'SQL*Net message from client',
    'SQL*Net message to client',
    'SQL*Net more data to client',
    'virtual circuit status',
    'WMON goes to sleep'
   )
AND event not like 'DFS%'
and event not like '%done%'
and event not like '%Idle%'
AND event not like 'KXFX%'
order by c2 desc;


Wed Feb 14
 page    1
                                System-wide Wait Analysis
                                 for current wait events
                                                                    Average
Event                                 Total  Seconds        Total      Wait
Name                                  Waits  Waiting     Timeouts (in secs)
------------------------------ ------------ -------- ------------ ---------
db file sequential read                 812        7            0      .010
control file parallel write             645        3            0      .000
control file sequential read            378        4            0      .010
log file parallel write                 213        0          127      .000
db file scattered read                  111        2            0      .020
wakeup time manager                      61    1,874           61    30.720
direct path read                         27        0            0      .000
rdbms ipc reply                          10        2            0      .180
db file parallel write                    8        0            4      .020
direct path write                         8        0            0      .000
buffer busy waits                         7        0            0      .000
log file sequential read                  4        0            0      .000
log file single write                     4        0            0      .000
LGWR wait for redo copy                   2        0            0      .000
log file sync                             2        0            0      .010
library cache load lock                   2        0            0      .000
instance state change                     2        0            0      .000
reliable message                          1        0            0      .070
refresh controlfile command               1        0            0      .050
control file heartbeat                    1        4            1     4.100



The type of buffer that causes the wait can be queried using the
v$waitstat view. This view lists the waits per buffer type for buffer busy waits, where COUNT is the sum of all waits for the class of block, and TIME is the sum of all wait times for that class:

select * from v$waitstat;

CLASS                   COUNT       TIME
 ------------------ ---------- ----------
 data block            1961113    1870278
 segment header          34535     159082
 undo header            233632      86239
 undo block               1886       1706

Buffer busy waits occur when an Oracle session needs to access a block in the buffer cache, but cannot because the buffer copy of the data block is locked. This buffer busy wait condition can happen for either of the following reasons:

Because buffer busy waits are due to contention between particular blocks, there's nothing you can do until you know which blocks are in conflict and why the conflicts are occurring. Tuning therefore involves identifying and eliminating the cause of the block contention.
The v$session_wait performance view, shown below, can give some insight into what is being waited for and why the wait is occurring.

SQL> desc v$session_wait
 Name                                      Null?    Type
 ----------------------------------------- -------- ---------------------
 SID                                                NUMBER
 SEQ#                                               NUMBER
 EVENT                                              VARCHAR2(64)
 P1TEXT                                             VARCHAR2(64)
 P1                                                 NUMBER
 P1RAW                                              RAW(4)
 P2TEXT                                             VARCHAR2(64)
 P2                                                 NUMBER
 P2RAW                                              RAW(4)
 P3TEXT                                             VARCHAR2(64)
 P3                                                 NUMBER
 P3RAW                                              RAW(4)
 WAIT_TIME                                          NUMBER
 SECONDS_IN_WAIT                                    NUMBER
 STATE                                              VARCHAR2(19)

The columns of the v$session_wait view that are of particular interest for a buffer busy wait event are:

Here's an Oracle data dictionary query for these values:

select p1 "File #", p2 "Block #", p3 "Reason Code"
from v$session_wait
where event = 'buffer busy waits';


If the output from repeatedly running the above query shows that a block or range of blocks is experiencing waits, the following query should show the name and type of the segment:

select owner, segment_name, segment_type
from dba_extents
where file_id = &P1
  and &P2 between block_id and block_id + blocks -1;


Once the segment is identified, the v$segment_statistics performance view facilitates real-time monitoring of segment-level statistics. This enables a DBA to identify performance problems associated with individual tables or indexes, as shown below.

select object_name, statistic_name, value
from V$SEGMENT_STATISTICS
where object_name = 'SOURCE$';
  
OBJECT_NAME   STATISTIC_NAME               VALUE
-----------  -------------------------     ----------
SOURCE$       logical reads                     11216
SOURCE$       buffer busy waits                   210
SOURCE$       db block changes                     32
SOURCE$       physical reads                    10365
SOURCE$       physical writes                       0
SOURCE$       physical reads direct                 0
SOURCE$       physical writes direct                0
SOURCE$       ITL waits                             0
SOURCE$       row lock waits

We can also query the dba_data_files to determine the file_name for the file involved in the wait by using the P1 value from v$session_wait for the file_id.

SQL> desc dba_data_files
 
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 FILE_NAME                                          VARCHAR2(513)
 FILE_ID                                            NUMBER
 TABLESPACE_NAME                                    VARCHAR2(30)
 BYTES                                              NUMBER
 BLOCKS                                             NUMBER
 STATUS                                             VARCHAR2(9)
 RELATIVE_FNO                                       NUMBER
 AUTOEXTENSIBLE                                     VARCHAR2(3)
 MAXBYTES                                           NUMBER
 MAXBLOCKS                                          NUMBER
 INCREMENT_BY                                       NUMBER
 USER_BYTES                                         NUMBER
 USER_BLOCKS                                        NUMBER

Interrogating the P3 (reason code) value from v$session_wait for a buffer busy wait event will tell us why the session is waiting. The reason codes range from 0 to 300 and can be decoded, as shown in Table A.

Table A

Code Reason for wait
- A modification is happening on a SCUR or XCUR buffer but has not yet completed.
0 The block is being read into the buffer cache.
100 We want to NEW the block, but the block is currently being read by another session (most likely for undo).
110 We want the CURRENT block either shared or exclusive but the block is being read into cache by another session, so we have to wait until its read() is completed.
120 We want to get the block in current mode, but someone else is currently reading it into the cache. Wait for the user to complete the read. This occurs during buffer lookup.
130 Block is being read by another session, and no other suitable block image was found, so we wait until the read is completed. This may also occur after a buffer cache assumed deadlock. The kernel can't get a buffer in a certain amount of time and assumes a deadlock. Therefore it will read the CR version of the block.
200 We want to NEW the block, but someone else is using the current copy, so we have to wait for that user to finish.
210 The session wants the block in SCUR or XCUR mode. If this is a buffer exchange or the session is in discrete TX mode, the session waits for the first time and the second time escalates the block as a deadlock, so does not show up as waiting very long. In this case, the statistic: "exchange deadlocks" is incremented, and we yield the CPU for the "buffer deadlock" wait event.
220 During buffer lookup for a CURRENT copy of a buffer, we have found the buffer but someone holds it in an incompatible mode, so we have to wait.
230 Trying to get a buffer in CR/CRX mode, but a modification has started on the buffer that has not yet been completed.
231 CR/CRX scan found the CURRENT block, but a modification has started on the buffer that has not yet been completed.

Reason codes
As I mentioned at the beginning of this article, buffer busy waits are prevalent in I/O-bound systems. I/O contention, resulting in waits for data blocks, is often due to numerous sessions repeatedly reading the same blocks, as when many sessions scan the same index. In this scenario, session one scans the blocks in the buffer cache quickly, but then a block has to be read from disk. While session one awaits the disk read to complete, other sessions scanning the same index soon catch up to session one and want the same block currently being read from disk. This is where the buffer busy wait occurs—waiting for the buffer blocks that are being read from disk. The following rules of thumb may be useful for resolving each of the noted contention situations:

The following STATSPACK script is very useful for detecting those times when the database has a high-level of buffer busy waits.
prompt ***********************************************************
prompt Buffer Busy Waits may signal a high update table with too
prompt few freelists. Find the offending table and add more freelists.
prompt ***********************************************************
prompt
column buffer_busy_wait format 999,999,999
column mydate heading 'yr. mo dy Hr.'
select to_char(snap_time,'yyyy-mm-dd HH24') mydate,
       new.name,
       new.buffer_busy_wait-old.buffer_busy_wait buffer_busy_wait
  from perfstat.stats$buffer_pool_statistics old,
       perfstat.stats$buffer_pool_statistics new,
       perfstat.stats$snapshot sn
  where snap_time > sysdate-&1
    and new.name <> 'FAKE VIEW'
    and new.snap_id = sn.snap_id
    and old.snap_id = sn.snap_id-1
    and new.buffer_busy_wait-old.buffer_busy_wait > 1
   group by to_char(snap_time,'yyyy-mm-dd HH24'), new.name, new.buffer_busy_wait-old.buffer_busy_wait ;



Show the percentage of a table in the data buffer
In Oracle9i we have a multiple blocks size feature, and separate independent data buffers can be created for all objects in the today, for 2k, 4k, 8k, 16k and 32k blocks sizes.
The following script will interrogate to the v$bh  view and give us counts all the number of data blocks in the buffer on a segment-by-segment basis.  Note that the script also then joins into the dba_objects view in order to count the number of data blocks in the segment and compare it to the buffer.  This script is a multi-step process, and rather than make the query complex with in-line views or subqueries, the script has been broken down into three separate queries using temporary tables to hold the intermediate results. The following query is extremely useful for showing the percentage of data blocks for on each table within the data buffer caches.
set pages 999
set lines 80
ttitle 'Contents of Data Buffers'
drop table t1;
 
create table t1 as
select o.object_name object_name, o.object_type object_type,
       count(1)  num_blocks
from dba_objects o, v$bh bh
where o.object_id  = bh.objd
and o.owner not in ('SYS','SYSTEM')
group by o.object_name, o.object_type
order by count(1) desc;
 
column c1 heading "Object|Name"   format a30
column c2 heading "Object|Type"   format a12
column c3 heading "Number of|Blocks"  format 999,999,999,999
column c4 heading "Percentage|of object|data blocks|in Buffer" format 999
 
select object_name c1, object_type c2, num_blocks  c3,
      (num_blocks/decode(sum(blocks), 0, .001, sum(blocks)))*100 c4
from t1, dba_segments s
where s.segment_name = t1.object_name
  and num_blocks > 10
group by object_name, object_type, num_blocks
order by num_blocks desc;

drop table t1;


Wed Oct 23                                          page    1

                   Contents of Data Buffers

                                                  Percentage
                                                   of object  
Object                      Object     Number of data blocks  
Name                        Type          Blocks   in Buffer  
--------------------------- ------- ------------ -----------  
MTL_DEMAND_INTERFACE        TABLE         38,745         100  
FND_CONCURRENT_REQUESTS     TABLE         16,636          88  
WIP_TRANSACTIONS            TABLE         14,777         100  
WIP_TRANSACTION_ACCOUNTS    TABLE         13,390          33  
CRP_RESOURCE_HOURS          TABLE          7,806         100  
SO_LINES_ALL                TABLE          7,576         100  
ABC_EDI_LINES               TABLE          7,041         100  
BOM_INVENTORY_COMPONENTS    TABLE          6,882          46  
MTL_SYSTEM_ITEMS            TABLE          4,747          63  
WIP_TRANSACTION_ACCOUNTS_N1 INDEX          3,996          38  
MTL_ITEM_CATEGORIES         TABLE          3,390         100  
RA_CUSTOMER_TRX_LINES_ALL   TABLE          3,264         100  
MRP_FORECAST_DATES          TABLE          3,082          99  
RA_CUSTOMER_TRX_ALL         TABLE          2,739          97  
WIP_OPERATIONS              TABLE          2,311          34  
SO_PICKING_LINES_ALL        TABLE          2,006         100  
MTL_DEMAND_INTERFACE_N10    INDEX          1,482          76  
BOM_OPERATION_RESOURCES     TABLE          1,456          45  
ABC_EDI_ERRORS              TABLE          1,427         100  
ABC_EDI_HEADERS             TABLE          1,188         100  


 



Testing Procedures or Packages for Performance
-- before.sql
set echo off
set timing off
set recsep off
column CPU noprint new_value before_cpu
column READS noprint new_value before_reads
select s_cpu.value CPU,
       sum(s_reads.value) READS
from sys.v_$session se,
     sys.v_$statname n_cpu,
     sys.v_$statname n_reads,
     sys.v_$sesstat s_cpu,
     sys.v_$sesstat s_reads
where n_reads.name in ('db block gets', 'consistent gets')
 and n_cpu.name = 'CPU used by this session'
 and n_cpu.statistic# = s_cpu.statistic#
 and n_reads.statistic# = s_reads.statistic#
 and s_cpu.sid = se.sid
 and s_reads.sid = se.sid
 and se.audsid = userenv('SESSIONID')
group by s_cpu.value
/
column CPU clear
column READS clear


will display nothing but blank lines but will collect values before your PL/SQL runs; immediately after your PL/SQL, run this :

-- after.sql
set echo off
set timing off
set recsep off
column CPU print format 999999
column READS print format 9999999999999
select s_cpu.value - &&before_cpu - 97 CPU,
       sum(s_reads.value) - &&before_reads - 10 READS
from sys.v_$session se,
     sys.v_$statname n_cpu,
     sys.v_$statname n_reads,
     sys.v_$sesstat s_cpu,
     sys.v_$sesstat s_reads
where n_reads.name in ('db block gets', 'consistent gets')
 and n_cpu.name = 'CPU used by this session'
 and n_cpu.statistic# = s_cpu.statistic#
 and n_reads.statistic# = s_reads.statistic#
 and s_cpu.sid = se.sid
 and s_reads.sid = se.sid
 and se.audsid = userenv('SESSIONID')
group by s_cpu.value
/
column CPU clear
column READS clear


Check Sorts
spool sorts.txt
--The ratio of sorts (disk) to sorts (memory) should be < 5%. 
-- Increase the size of SORT_AREA_SIZE if it is less than 5%. 
-- Increments of 10% should be fine. 
select disk.value "Disk", mem.value "Mem", (disk.value/mem.value)*100 "Ratio"
  from v$sysstat mem, v$sysstat disk
  where mem.name = 'sorts (memory)' 
  and disk.name = 'sorts (disk)';
spool off



Optimizing Indexes
Move Indexes to a 32k Block Size
Create a 32k_block Cache in the SPFILE
db_32k_cache_size = 32M

Create a Tablespace using 32K Blocks
CREATE TABLESPACE "TS_32K_INDEXES" LOGGING DATAFILE '/oradata/SID/TS_32K_IND.dbf'
SIZE 100M BLOCKSIZE 32768 EXTENT
MANAGEMENT LOCAL UNIFORM SIZE 1M SEGMENT SPACE MANAGEMENT AUTO;